topological_recursion
#
Topological recursion
This module implements topological recursion. In particular it makes available the computation of various integral of cohomology classes on M_{g,n} (psi, lambda and kappa classes).
REFS:
G. Borot “Topological recursion and geometry” arXiv:1705.09986
J. E. Andersen, G. Borot, L. O. Chekhov, N. Orantin “The ABCD of topological recursion” arXiv:1703.03307
R. Pandharipande “Cohomological field theory calculations” arXiv:1712.02528
TODO:
generic symbolic TR
other recursions: - ELSV, Eynard Bouchard-Marino conjectures and simple Hurwitz numbers (lambda classes) - bundle of quadratic differentials and co
generating series
simplification of the recursion via the generalized string and dilaton
- class surface_dynamics.topological_recursion.topological_recursion.TopologicalRecursion(cache_all=False, base_ring=None)#
A generic topological recursion.
For concrete examples see:
- A(i, j, k)#
- B(g, n, i, j)#
- C(g, n, i)#
- D(i)#
- F(g, n, I)#
Return the value of the partition function F_{g,n}(I) where I = (i_0, i_1, …, i_{n-1}) is a tuple of n non-negative integers whose sum is <= 3g-3+n.
We assume here that the topological recursion given by A, B, C and D produces a partition function symmetric in the variables i_0, i_1, …, i_{n-1}.
- polynomial(g, n, ring=None)#
- write(g, n, s=None)#
Print normalized values of the polynomials F_{g,n}
- surface_dynamics.topological_recursion.topological_recursion.compositions(g, n)#
Return compositions of sum at most 3g-3+n and length n