pillowcase_cover
#
Initialize self. See help(type(self)) for accurate signature.
- surface_dynamics.flat_surfaces.origamis.pillowcase_cover.PillowcaseCover(g0, g1, g2, g3=None, sparse=False, check=True, as_tuple=False, positions=None, name=None)#
Pillowcase cover constructor.
The chosen flat structure is as follows:
3-----2-----3 | . | | . | | . | 0-----1-----0
- class surface_dynamics.flat_surfaces.origamis.pillowcase_cover.PillowcaseCover_dense#
Generic class for pillowcase cover.
- as_graph()#
Return the graph associated to self
- connected_components()#
Return the list of connected origami that composes this origami.
- g(i=None)#
Return the
i
-th permutation that defines this pillowcase cover.
- is_connected()#
Check whether the origami is connected or not
It is equivalent to ask whether the group generated by r and u acts transitively on the {1,dots,n}.
- is_orientable()#
Test whether the foliation is orientable.
- is_primitive(return_base=False)#
A pillowcase cover is primitive if it does not cover an other pillowcase cover.
- monodromy()#
Return the monodromy group of the pillowcase cover.
The monodromy group of an origami is the group generated by the permutations g_i for i in 0,1,2,3.
- orientation_cover()#
Return the orientation cover as an origami.
EXAMPLES:
The pillowcase itself has cover a torus (made from 4 squares):
sage: from surface_dynamics import * sage: p0 = p1 = p2 = p3 = [0] sage: pc = PillowcaseCover(p0, p1, p2, p3, as_tuple=True) sage: pc.stratum() Q_0(-1^4) sage: o = pc.orientation_cover() sage: o (1,2)(3,4) (1,4)(2,3) sage: o.stratum() H_1(0)
An example in Q(1,-1^5) whose cover belongs to H(2):
sage: p0 = [2,1,0] sage: p1 = [2,0,1] sage: p2 = [1,0,2] sage: p3 = [0,1,2] sage: pc = PillowcaseCover(p0, p1, p2, p3,as_tuple=True) sage: pc.stratum() Q_0(1, -1^5) sage: o = pc.orientation_cover() sage: o (1,2,3,4)(5,6)(7,10,9,8)(11,12) (1,10,5,12)(2,9)(3,8)(4,7,6,11) sage: o.stratum() H_2(2)
A last example in Q(2^2):
sage: q = QuadraticCylinderDiagram('(0,1)-(2,3) (0,3)-(1,2)') sage: pc = q.cylcoord_to_pillowcase_cover([1,1,1,1], [2,2], [0,1]) sage: pc.orientation_cover().stratum() H_3(1^4)
- profile(i=None)#
Return the profile (= ramification type above each pole).
- stratum(fake_zeros=False)#
Return the stratum of self. It may be either a stratum of Abelian or quadratic differentials.
EXAMPLES:
sage: from surface_dynamics import * sage: PillowcaseCover('(1,2)(3,4)', '(1,3)', '()').stratum() Q_0(2, -1^6)