linalg
#
Some linear algebra routines
- surface_dynamics.misc.linalg.cone_triangulate(C, hyperplane=None)#
Triangulation of rational cone contained in the positive quadrant.
EXAMPLES:
sage: from surface_dynamics.misc.linalg import cone_triangulate sage: P = Polyhedron(rays=[(1,0,0),(0,1,0),(1,0,1),(0,1,1)]) sage: list(cone_triangulate(P)) # random [[(0, 1, 1), (0, 1, 0), (1, 0, 0)], [(0, 1, 1), (1, 0, 1), (1, 0, 0)]] sage: len(_) 2 sage: rays = [(0, 1, 0, -1, 0, 0), ....: (1, 0, -1, 0, 0, -1), ....: (0, 1, -1, 0, 0, -1), ....: (0, 0, 1, 0, 0, 0), ....: (0, 0, 0, 1, 0, -1), ....: (1, -1, 0, 0, 1, -1), ....: (0, 0, 0, 0, 1, -1), ....: (0, 0, 1, -1, 1, 0), ....: (0, 0, 1, -1, 0, 0), ....: (0, 0, 1, 0, -1, 0), ....: (0, 0, 0, 1, -1, -1), ....: (1, -1, 0, 0, 0, -1), ....: (0, 0, 0, 0, 0, -1)] sage: P = Polyhedron(rays=rays) sage: list(cone_triangulate(P, hyperplane=(1, 2, 3, -1, 0, -5))) # random [[(0, 0, 0, 0, 0, -1), (0, 0, 0, 0, 1, -1), (0, 0, 0, 1, -1, -1), (0, 0, 1, 0, 0, 0), (0, 1, -1, 0, 0, -1), (1, -1, 0, 0, 1, -1)], ... (0, 0, 1, 0, 0, 0), (0, 1, -1, 0, 0, -1), (0, 1, 0, -1, 0, 0), (1, -1, 0, 0, 1, -1), (1, 0, -1, 0, 0, -1)]] sage: len(_) 16
- surface_dynamics.misc.linalg.deformation_cone(v)#
Return the deformation cone of the given vector
v
EXAMPLES:
sage: from surface_dynamics.misc.linalg import deformation_cone sage: K.<sqrt2> = QuadraticField(2) sage: v3 = vector([sqrt2, 1, 1+sqrt2]) sage: P = deformation_cone(v3) sage: P A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 rays sage: P.rays_list() [[1, 0, 1], [0, 1, 1]]
- surface_dynamics.misc.linalg.deformation_space(lengths)#
Deformation space of the given
lengths
This is the smallest vector space defined over QQ that contains the vector
lengths
. Its dimension is rank.EXAMPLES:
sage: from surface_dynamics.misc.linalg import deformation_space sage: K.<sqrt2> = QuadraticField(2) sage: v3 = vector([sqrt2, 1, 1+sqrt2]) sage: deformation_space(v3) Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [1 0 1] [0 1 1] sage: v4 = vector([sqrt2, 1, 1+sqrt2, 1-sqrt2]) sage: deformation_space(v4) Vector space of degree 4 and dimension 2 over Rational Field Basis matrix: [ 1 0 1 -1] [ 0 1 1 1] sage: v = vector([1, 5, 2, 9]) sage: deformation_space(v) Vector space of degree 4 and dimension 1 over Rational Field Basis matrix: [1 5 2 9]
The deformation space has some covariance relation with respect to matrix actions:
sage: m3 = matrix(3, [1,-1,0,2,-3,4,5,-2,2]) sage: deformation_space(v3 * m3) == deformation_space(v3) * m3 True sage: deformation_space(m3 * v3) == deformation_space(v3) * m3.transpose() True sage: m4 = matrix(4, [1,-1,0,1,2,-3,0,4,5,3,-2,2,1,1,1,1]) sage: deformation_space(v4 * m4) == deformation_space(v4) * m4 True sage: deformation_space(m4 * v4) == deformation_space(v4) * m4.transpose() True
- surface_dynamics.misc.linalg.relation_space(v)#
Relation space of the given vector
v
This is the sub vector space of QQ^d given as the kernel of the map n mapsto n cdot lambda. The dimension is d - rank.
EXAMPLES:
sage: from surface_dynamics.misc.linalg import relation_space sage: K.<sqrt2> = QuadraticField(2) sage: v3 = vector([sqrt2, 1, 1+sqrt2]) sage: relation_space(v3) Vector space of degree 3 and dimension 1 over Rational Field Basis matrix: [ 1 1 -1] sage: v4 = vector([sqrt2, 1, 1+sqrt2, 1-sqrt2]) sage: relation_space(v4) Vector space of degree 4 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/2 1/2] [ 0 1 -1/2 -1/2] sage: v = vector([1,2,5,3]) sage: relation_space(v) Vector space of degree 4 and dimension 3 over Rational Field Basis matrix: [ 1 0 0 -1/3] [ 0 1 0 -2/3] [ 0 0 1 -5/3]
The relation space has some covariance relation with respect to matrix actions:
sage: m3 = matrix(3, [1,-1,0,2,-3,4,5,-2,2]) sage: relation_space(v3 * m3) == relation_space(v3) * ~m3.transpose() True sage: relation_space(m3 * v3) == relation_space(v3) * ~m3 True sage: m4 = matrix(4, [1,-1,0,1,2,-3,0,4,5,3,-2,2,1,1,1,1]) sage: relation_space(v4 * m4) == relation_space(v4) * ~m4.transpose() True sage: relation_space(m4 * v4) == relation_space(v4) * ~m4 True
- surface_dynamics.misc.linalg.symbolic_matrix_power(M, n)#
Return the symbolic power
M^n
of the unipotent matrixM
.EXAMPLES:
sage: from surface_dynamics.misc.linalg import symbolic_matrix_power sage: m = matrix(3, [1,1,1,0,1,1,0,0,1]) sage: n = polygen(QQ, 'n') sage: symbolic_matrix_power(m, n) [ 1 n 1/2*n^2 + 1/2*n] [ 0 1 n] [ 0 0 1] sage: m = matrix(2, [2,1,1,1]) sage: symbolic_matrix_power(m, n) Traceback (most recent call last): ... NotImplementedError: power only implemented for unipotent matrices