abelian_strata

Contents

abelian_strata#

Strata of differentials on Riemann surfaces

The space of Abelian differentials on Riemann surfaces of a given genus is stratified by degrees of zeros. Each stratum has one, two or three connected components each of which is associated to an extended Rauzy class. The components() method lists connected components of a stratum.

The work for Abelian differentials was done by Maxim Kontsevich and Anton Zorich in [KonZor03] and for quadratic differentials by Erwan Lanneau in [Lan08]. Zorich gave an algorithm to pass from a connected component of a stratum to the associated Rauzy class (for both interval exchange transformations and linear involutions) in [Zor08] and is implemented for Abelian stratum at different level (approximately one for each component):

The inverse operation (pass from an interval exchange transformation to the connected component) is partially written in [KonZor03] and simply named here ?

Some of the code here was first available on Mathematica [ZS].

A refinement of Zorich representatives was worked out by L. Jefreys in [Jef19]. Namely, for each connected component of Abelian differential his construction provides a square-tiled surface with both in horizontal and vertical direction a decomposition with single cylinder of height one. The implementation is available as

AUTHORS:

  • Vincent Delecroix (2009-09-29): initial version

EXAMPLES:

sage: from surface_dynamics import *

Construction of a stratum from a list of singularity degrees:

sage: a = Stratum([1,1], k=1)
sage: a
H_2(1^2)
sage: a.surface_genus()
2
sage: a.dimension()
5
sage: a = Stratum([4,3,2,1], k=1)
sage: a
H_6(4, 3, 2, 1)
sage: a.surface_genus()
6
sage: a.dimension()
15

By convention, the degrees are always written in decreasing order:

sage: a1 = Stratum([4,3,2,1], k=1)
sage: a1
H_6(4, 3, 2, 1)
sage: a2 = Stratum([2,3,1,4], k=1)
sage: a2
H_6(4, 3, 2, 1)
sage: a1 == a2
True

It is possible to lis strata and their connected components:

sage: Stratum([10], k=1).components()
(H_6(10)^hyp, H_6(10)^odd, H_6(10)^even)

Get a list of strata with constraints on genus or on the number of intervals of a representative:

sage: AbelianStrata(genus=3).list()
[H_3(4), H_3(3, 1), H_3(2^2), H_3(2, 1^2), H_3(1^4)]

Obtains the connected components of a stratum:

sage: a = Stratum([0], k=1)
sage: a.components()
(H_1(0)^hyp,)
sage: @cached_function
....: def nb_irred_perm(n):
....:     if n == 0 or n == 1: return 1
....:     return factorial(n) - sum(nb_irred_perm(k) * factorial(n - k) for k in range(1,n))
sage: [nb_irred_perm(i) for i in range(10)]
[1, 1, 1, 3, 13, 71, 461, 3447, 29093, 273343]
sage: A = AbelianStrata(dimension=5, fake_zeros=True)
sage: N = 0
sage: for a in A:
....:    for cc in a.components():
....:       for z in set(a.signature()):
....:           p = cc.permutation_representative(left_degree=z)
....:           n = p.rauzy_diagram().cardinality()
....:           print("%13s, %d  :  %d"%(cc, z, n))
....:           print(p)
....:           N += n
H_2(2, 0)^hyp, 0  :  11
0 1 2 3 4
4 2 1 3 0
H_2(2, 0)^hyp, 2  :  35
0 1 2 3 4
4 1 3 2 0
 H_2(1^2)^hyp, 1  :  15
0 1 2 3 4
4 3 2 1 0
 H_1(0^4)^hyp, 0  :  10
0 1 2 3 4
4 0 1 2 3
sage: N
71
sage: nb_irred_perm(5)
71
surface_dynamics.flat_surfaces.abelian_strata.ASC#

alias of AbelianStratumComponent

class surface_dynamics.flat_surfaces.abelian_strata.AbelianStrata(genus=None, dimension=None, fake_zeros=None)#

Abelian strata.

INPUT:

  • genus - a non negative integer or None

  • dimension - a non negative integer or None

  • fake_zeros - boolean

EXAMPLES:

sage: from surface_dynamics import *

Abelian strata with a given genus:

sage: for s in AbelianStrata(genus=1): print(s)
H_1(0)
sage: for s in AbelianStrata(genus=2): print(s)
H_2(2)
H_2(1^2)
sage: for s in AbelianStrata(genus=3): print(s)
H_3(4)
H_3(3, 1)
H_3(2^2)
H_3(2, 1^2)
H_3(1^4)
sage: for s in AbelianStrata(genus=4): print(s)
H_4(6)
H_4(5, 1)
H_4(4, 2)
H_4(4, 1^2)
H_4(3^2)
H_4(3, 2, 1)
H_4(3, 1^3)
H_4(2^3)
H_4(2^2, 1^2)
H_4(2, 1^4)
H_4(1^6)

Get outside of the tests. Abelian strata with a given number of intervals

sage for s in AbelianStrata(dimension=2): print(s) H^out([0])

sage for s in AbelianStrata(dimension=3): print(s) H^out([0], 0)

sage for s in AbelianStrata(dimension=4): print(s) H^out([2]) H^out([0], 0, 0)

Get outside of tests sage for s in AbelianStrata(dimension=5): print(s) H^out(2, [0]) H^out([2], 0) H^out([1], 1) H^out([0], 0, 0, 0)

class surface_dynamics.flat_surfaces.abelian_strata.AbelianStrata_all(genus=None, dimension=None, fake_zeros=None)#

Abelian strata.

INPUT:

  • fake_zeros - boolean (default: False)

EXAMPLES:

sage: from surface_dynamics import *

sage: A = AbelianStrata()
sage: it = iter(A)
sage: for _ in range(10):
....:     print(next(it))
H_1(0)
H_2(2)
H_2(1^2)
H_3(4)
H_3(3, 1)
H_3(2^2)
H_4(6)
H_3(2, 1^2)
H_4(5, 1)
H_4(4, 2)

sage: A = AbelianStrata(fake_zeros=True)
sage: it = iter(A)
sage: for _ in range(10):
....:     print(next(it))
H_1(0)
H_1(0^2)
H_2(2)
H_1(0^3)
H_2(2, 0)
H_2(1^2)
H_1(0^4)
H_3(4)
H_2(2, 0^2)
H_2(1^2, 0)
class surface_dynamics.flat_surfaces.abelian_strata.AbelianStrata_d(genus=None, dimension=None, fake_zeros=None)#

Strata with prescribed dimension.

INPUT:

  • dimension - an integer greater than 1

  • fake_zeros - boolean (default: False) - allows or not fake zeros

EXAMPLES:

sage: from surface_dynamics import *

sage: for a in AbelianStrata(dimension=5,fake_zeros=True):
....:     print(a)
....:     print(a.permutation_representative())
H_2(2, 0)
0 1 2 3 4
4 1 3 2 0
H_2(1^2)
0 1 2 3 4
4 3 2 1 0
H_1(0^4)
0 1 2 3 4
4 0 1 2 3
an_element()#

Returns the first stratum.

EXAMPLES:

sage: from surface_dynamics import AbelianStrata

sage: AbelianStrata(dimension=2).first()
H_1(0)
sage: AbelianStrata(dimension=3).first()
H_1(0^2)
sage: AbelianStrata(dimension=4).first()
H_2(2)
cardinality()#

Return the number of Abelian strata with given dimension.

EXAMPLES:

sage: from surface_dynamics import *

sage: AbelianStrata(dimension=5,fake_zeros=True).cardinality()
3
sage: AbelianStrata(dimension=5,fake_zeros=False).cardinality()
1

sage: AbelianStrata(dimension=6,fake_zeros=True).cardinality()
4
sage: AbelianStrata(dimension=6,fake_zeros=False).cardinality()
1

sage: AbelianStrata(dimension=7,fake_zeros=True).cardinality()
6
sage: AbelianStrata(dimension=7,fake_zeros=False).cardinality()
2

sage: AbelianStrata(dimension=12,fake_zeros=True).cardinality()
29
sage: AbelianStrata(dimension=12,fake_zeros=False).cardinality()
7

TESTS:

sage: for d in range(1,15):
....:   A = AbelianStrata(dimension=d,fake_zeros=True)
....:   assert len(A.list()) == A.cardinality()
....:   A = AbelianStrata(dimension=d,fake_zeros=False)
....:   assert len(A.list()) == A.cardinality()
first()#

Returns the first stratum.

EXAMPLES:

sage: from surface_dynamics import AbelianStrata

sage: AbelianStrata(dimension=2).first()
H_1(0)
sage: AbelianStrata(dimension=3).first()
H_1(0^2)
sage: AbelianStrata(dimension=4).first()
H_2(2)
last()#

Return the last stratum.

EXAMPLES:

sage: from surface_dynamics import AbelianStrata

sage: AbelianStrata(dimension=9,fake_zeros=True).last()
H_1(0^8)
sage: AbelianStrata(dimension=9,fake_zeros=False).last()
H_3(1^4)

sage: AbelianStrata(dimension=10,fake_zeros=True).last()
H_1(0^9)
sage: AbelianStrata(dimension=10,fake_zeros=False).last()
H_4(2^3)
class surface_dynamics.flat_surfaces.abelian_strata.AbelianStrata_g(genus=None, dimension=None, fake_zeros=None)#

Stratas of genus g surfaces without fake zeros.

INPUT:

  • genus - a non negative integer

EXAMPLES:

sage: from surface_dynamics import *

sage: AbelianStrata(genus=2).list()
[H_2(2), H_2(1^2)]
sage: AbelianStrata(genus=3).list()
[H_3(4), H_3(3, 1), H_3(2^2), H_3(2, 1^2), H_3(1^4)]
sage: AbelianStrata(genus=4).random_element() #random
H_4(4, 2)
an_element_()#

Return the first element of this list of strata.

EXAMPLES:

sage: from surface_dynamics import AbelianStrata

sage: AbelianStrata(genus=3).first()
H_3(4)
sage: AbelianStrata(genus=4).first()
H_4(6)
cardinality()#

Return the number of abelian strata with a given genus.

EXAMPLES:

sage: from surface_dynamics import *

sage: AbelianStrata(genus=1).cardinality()
1
sage: AbelianStrata(genus=2).cardinality()
2
sage: AbelianStrata(genus=3).cardinality()
5
sage: AbelianStrata(genus=4).cardinality()
11
first()#

Return the first element of this list of strata.

EXAMPLES:

sage: from surface_dynamics import AbelianStrata

sage: AbelianStrata(genus=3).first()
H_3(4)
sage: AbelianStrata(genus=4).first()
H_4(6)
last()#

Return the last element of this list of strata.

EXAMPLES:

sage: from surface_dynamics import *

sage: AbelianStrata(genus=4).last()
H_4(1^6)
sage: AbelianStrata(genus=5).last()
H_5(1^8)
random_element()#

Return a random stratum.

class surface_dynamics.flat_surfaces.abelian_strata.AbelianStrata_gd(genus=None, dimension=None, fake_zeros=None)#

Abelian strata of prescribed genus and number of intervals.

INPUT:

  • genus - integer: the genus of the surfaces

  • dimension - integer: the number of intervals

  • fake_zeros - boolean: whether or not consider fake zeros

class surface_dynamics.flat_surfaces.abelian_strata.AbelianStratum(signature, k=1)#

Stratum of Abelian differentials.

A stratum with a marked outgoing separatrix corresponds to Rauzy diagram with left induction, a stratum with marked incoming separatrix correspond to Rauzy diagram with right induction. If there is no marked separatrix, the associated Rauzy diagram is the extended Rauzy diagram (consideration of the surface_dynamics.interval_exchanges.template.Permutation.symmetric() operation of Boissy-Lanneau).

When you want to specify a marked separatrix, the degree on which it is is the first term of your degrees list.

INPUT:

  • marked_separatrix - None (default) or ‘in’ (for incoming separatrix) or ‘out’ (for outgoing separatrix).

EXAMPLES:

sage: from surface_dynamics import *

Creation of an Abelian stratum and get its connected components:

sage: a = Stratum((2, 2), k=1)
sage: a
H_3(2^2)
sage: a.components()
(H_3(2^2)^hyp, H_3(2^2)^odd)

Get a permutation representative of a connected component:

sage: a = Stratum((2,2), k=1)
sage: a_hyp, a_odd = a.components()
sage: a_hyp.permutation_representative()
0 1 2 3 4 5 6
6 5 4 3 2 1 0
sage: a_odd.permutation_representative()
0 1 2 3 4 5 6
3 2 4 6 5 1 0

You can specify the alphabet:

sage: a_odd.permutation_representative(alphabet="ABCDEFGHIJKLMNOPQRSTUVWXYZ")
A B C D E F G
D C E G F B A
cylinder_diagram_iterator(ncyls=None, up_to_symmetry=True, force_computation=False)#

Iterator over all cylinder diagram of this stratum.

The generation is up to isomorphism and horizontal/vertical symmetry (and they are in standard form).

INPUT:

  • ncyls – an optional number of cylinders

  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation – if True do no use the database of cylinder diagrams (default is False)

EXAMPLES:

sage: from surface_dynamics import Stratum, CylinderDiagram

sage: A = Stratum([4], k=1)
sage: C1 = [CylinderDiagram('(0,2,1)-(0,3,4) (3)-(2) (4)-(1)'),
....:       CylinderDiagram('(0,2,1)-(0,3,4) (3)-(1) (4)-(2)'),
....:       CylinderDiagram('(0,1)-(0,3,4) (2,3)-(1) (4)-(2)'),
....:       CylinderDiagram('(0,2)-(4) (1,4)-(2,3) (3)-(0,1)'),
....:       CylinderDiagram('(0,2)-(0,3) (1,3)-(1,4) (4)-(2)'),
....:       CylinderDiagram('(0,1)-(0,3) (2,3)-(1,4) (4)-(2)')]
sage: C2 = list(A.cylinder_diagram_iterator(3, force_computation=True))
sage: assert len(C1) == len(C2)
sage: for (c1, c2) in zip(C1, C2):
....:     assert c1.is_isomorphic(c2) or \
....:            c1.is_isomorphic(c2.horizontal_symmetry()) or \
....:            c1.is_isomorphic(c2.vertical_symmetry()) or \
....:            c1.is_isomorphic(c2.inverse())

sage: sum(1 for _ in A.cylinder_diagram_iterator(3, True, True))
6
sage: sum(1 for _ in A.cylinder_diagram_iterator(3, True, False))
6
sage: sum(1 for _ in A.cylinder_diagram_iterator(3, False, True))
9
sage: sum(1 for _ in A.cylinder_diagram_iterator(3, False, False))
9
cylinder_diagrams(ncyls=None, up_to_symmetry=True, force_computation=False)#

Return a list of cylinder diagram of this stratum.

INPUT:

- ``ncyls`` -- an optional number of cylinders
  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation – If True then do not use the database of cylinder diagrams (default is False).

EXAMPLES:

sage: from surface_dynamics import Stratum, CylinderDiagram

sage: A = Stratum([2,2], k=1)
sage: C1 = [CylinderDiagram('(0,1)-(0,5) (2)-(4) (3,4)-(1) (5)-(2,3)'),
....:       CylinderDiagram('(0,2,1)-(3,4,5) (3)-(1) (4)-(2) (5)-(0)'),
....:       CylinderDiagram('(0,2,1)-(3,5,4) (3)-(1) (4)-(2) (5)-(0)'),
....:       CylinderDiagram('(0,3)-(5) (1)-(0) (2,5)-(3,4) (4)-(1,2)'),
....:       CylinderDiagram('(0,3)-(0,5) (1,2)-(1,4) (4)-(3) (5)-(2)'),
....:       CylinderDiagram('(0,5)-(3,4) (1,4)-(2,5) (2)-(0) (3)-(1)'),
....:       CylinderDiagram('(0,5)-(3,4) (1,4)-(2,5) (2)-(1) (3)-(0)')]
sage: C2 = A.cylinder_diagrams(4)
sage: assert len(C1) == len(C2)
sage: isoms = []
sage: for c in A.cylinder_diagrams(4):
....:     isom = []
....:     for i,cc in enumerate(C1):
....:         if c.is_isomorphic(cc) or \
....:            c.is_isomorphic(cc.horizontal_symmetry()) or \
....:            c.is_isomorphic(cc.vertical_symmetry()) or \
....:            c.is_isomorphic(cc.inverse()):
....:              isom.append(i)
....:     assert len(isom) == 1, isom
....:     isoms.extend(isom)
sage: assert sorted(isoms) == [0, 1, 2, 3, 4, 5, 6]

sage: len(A.cylinder_diagrams(4, up_to_symmetry=False))
7
sage: sum(4 / (1 + sum(cd.symmetries())) for cd in A.cylinder_diagrams(4, up_to_symmetry=True))
7

Recovering the multiplicity of the symmetric versions:

sage: total = 0
sage: for c in Stratum([2,1,1], k=1).cylinder_diagrams(2):
....:     total += 4 // (1 + sum(c.symmetries()))
sage: total
61
sage: len(Stratum([2, 1, 1], k=1).cylinder_diagrams(2, up_to_symmetry=False))
61

You obtain the same number directly:

sage: Stratum([2, 1, 1], k=1).cylinder_diagrams_number(2, up_to_symmetry=False)
61
cylinder_diagrams_by_component(ncyls=None, up_to_symmetry=True, force_computation=False)#

Return a dictionary component -> list of cylinder diagrams.

INPUT:

  • ncyls - None or integer (default: None) - the number of cylinders

  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation - boolean (default: False) - if False, then try to use the database.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: A = Stratum([4], k=1)
sage: cyls = A.cylinder_diagrams_by_component(ncyls=2, force_computation=True)
sage: A_hyp = A.hyperelliptic_component()
sage: A_odd = A.odd_component()
sage: len(cyls[A_odd])
4
sage: len(cyls[A_hyp])
2

sage: all(c.ncyls() == 2 for c in cyls[A_hyp])
True
sage: all(c.stratum_component() == A_hyp for c in cyls[A_hyp])
True

sage: all(c.ncyls() == 2 for c in cyls[A_odd])
True
sage: all(c.stratum_component() == A_odd for c in cyls[A_odd])
True

sage: for ncyls in range(1, 4):
....:     for up_to_symmetry in [True, False]:
....:         cd1 = A.cylinder_diagrams_by_component(ncyls, up_to_symmetry, True)
....:         cd2 = A.cylinder_diagrams_by_component(ncyls, up_to_symmetry, False)
....:         assert len(cd1[A_hyp]) == len(cd2[A_hyp])
....:         assert len(cd1[A_odd]) == len(cd2[A_odd])
cylinder_diagrams_number(ncyls=None, up_to_symmetry=True, force_computation=False)#

Return the number of cylinder diagram that belongs to this stratum.

INPUT:

  • ncyls – an optional number of cylinders

  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation – if True do no use the database of cylinder diagrams (default is False)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: H22 = Stratum([2,2], k=1)
sage: H22.cylinder_diagrams_number(3)
18
sage: H22.cylinder_diagrams_number(4)
7

If force_computation is set to True then the database is not used. It might be slower for large strata:

sage: H22.cylinder_diagrams_number(3, force_computation=True)
18
sage: H22.cylinder_diagrams_number(4, force_computation=True)
7

sage: H31 = Stratum([3,1], k=1)
sage: for d in range(1,5):
....:     print("%d %d" %(H31.cylinder_diagrams_number(d, True, False),
....:                     H31.cylinder_diagrams_number(d, True, True)))
2 2
12 12
16 16
4 4

sage: H211 = Stratum([2,1,1], k=1)
sage: for d in range(1,6):
....:     print("%d %d" % (H211.cylinder_diagrams_number(d, True, False),
....:               H211.cylinder_diagrams_number(d, True, True)))
5 5
29 29
53 53
27 27
8 8
even_component()#

Return the even component of self (if any)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum({2:4}, k=1)
sage: a
H_5(2^4)
sage: a.even_component()
H_5(2^4)^even
has_even_component()#

Test whether this stratum has an even spin component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum((2,2), k=1).has_even_component()
False
sage: Stratum((6,), k=1).has_even_component()
True
sage: Stratum((6,), k=1).even_component()
H_4(6)^even

sage: Stratum((0,), k=1).has_even_component()
False
has_hyperelliptic_component()#

Test whether this stratum has an hyperelliptic component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum((2,1,1), k=1).has_hyperelliptic_component()
False
sage: Stratum((2,2), k=1).has_hyperelliptic_component()
True
sage: Stratum((0,0,0), k=1).has_hyperelliptic_component()
True
sage: Stratum((2,0), k=1).has_hyperelliptic_component()
True
sage: Stratum((2,2), k=1).hyperelliptic_component()
H_3(2^2)^hyp
has_non_hyperelliptic_component()#

Test whether this stratum has a non-hyperelliptic component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum((1,1), k=1).has_non_hyperelliptic_component()
False
sage: Stratum((3,3), k=1).has_non_hyperelliptic_component()
True
sage: Stratum((3,3,0), k=1).has_non_hyperelliptic_component()
True

sage: Stratum((3,3), k=1).non_hyperelliptic_component()
H_4(3^2)^nonhyp
has_odd_component()#

Test whether this stratum has an odd spin component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum((2,), k=1).has_odd_component()
False
sage: Stratum((4,), k=1).has_odd_component()
True
sage: Stratum((4,), k=1).odd_component()
H_3(4)^odd

sage: Stratum((0,), k=1).has_odd_component()
False
hyperelliptic_component()#

Return the hyperelliptic component of self (if any)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([10], k=1)
sage: a
H_6(10)
sage: a.hyperelliptic_component()
H_6(10)^hyp
non_hyperelliptic_component()#

Return the non hyperelliptic component of self (if any)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum((3,3), k=1)
sage: a
H_4(3^2)
sage: a.non_hyperelliptic_component()
H_4(3^2)^nonhyp
odd_component()#

Return the odd component of self (if any).

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([2,2], k=1)
sage: a
H_3(2^2)
sage: a.odd_component()
H_3(2^2)^odd
one_cylinder_diagram()#

Return a diagram with one cylinder in this connected component.

The diagram returned is the one deduced from the method representative.

INPUT:

  • ncyls - the number of cylinders

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([3,2,1], k=1)
sage: a
H_4(3, 2, 1)
sage: c = a.one_cylinder_diagram();c
(0,8,3,2,1,6,5,4,7)-(0,8,7,6,5,4,3,2,1)
sage: c.stratum()
H_4(3, 2, 1)
orientation_quotients(fake_zeros=False)#

Return the list of quadratic strata such that their orientation cover are contained in this stratum.

If fake_zeros (default: False) is True we do care about poles which becomes a marked zero.

EXAMPLES:

sage: from surface_dynamics import Stratum

The stratum H(2g-2) has one conic singularities of angle 2(2g-1)pi. The only way a surface in H(2g-2) covers a quadratic differential is that the quadratic differential has as unique zeros a conical singularity of angle (2g-1) pi. The number of poles may vary and give a collection of possibilities:

sage: Stratum([2], k=1).orientation_quotients()
[Q_0(1, -1^5)]
sage: Stratum([4], k=1).orientation_quotients()
[Q_1(3, -1^3), Q_0(3, -1^7)]
sage: Stratum([6], k=1).orientation_quotients()
[Q_2(5, -1), Q_1(5, -1^5), Q_0(5, -1^9)]

A stratum with two zeros may or may not have orientation quotients:

sage: Stratum([1,1], k=1).orientation_quotients()
[Q_1(2, -1^2), Q_0(2, -1^6)]
sage: Stratum([2,2], k=1).orientation_quotients()
[Q_1(1^2, -1^2), Q_0(1^2, -1^6), Q_1(4, -1^4), Q_0(4, -1^8)]
sage: Stratum([3,1], k=1).orientation_quotients()
[]

To impose that covering of poles are fake zeros, switch option fake_zeros to True:

sage: Stratum([2,2,0,0], k=1).orientation_quotients(fake_zeros=True)
[Q_1(1^2, -1^2)]
separatrix_diagram_iterator(ncyls=None)#

Return an iterator over the separatrix diagrams of this stratum.

For strata of small dimension, it could be faster to use the method separatrix_diagrams.

INPUT:

  • ncyls – an optional number of cylinders

separatrix_diagrams(ncyls=None)#

Returns the list of separatrix diagrams that appears in this stratum.

INPUT:

  • database - boolean (default: True) - if True, use the FlatSurfacesDatabase

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([2], k=1)
sage: a
H_2(2)
sage: for s in a.separatrix_diagrams(): print(s)
(0,1,2)-(0,1,2)
(0)(1,2)-(0,1)(2)

TESTS:

sage: from surface_dynamics import Stratum

sage: for (zeros, ncyl) in [((4,), 3), ((2,2), 4)]:
....:     S = Stratum(zeros, k=1).separatrix_diagrams(3)
....:     for i in range(len(S)):
....:         for j in range(i):
....:              assert not S[i].is_isomorphic(S[j])
separatrix_diagrams_number(ncyls=None)#

Return the number of separatrix diagram that belongs to this stratum.

single_cylinder_origami()#

Returns an origami associated to a single cylinder permutation representative.

Returns an origami in this connected component having a single vertical cylinder and a single horizontal cylinder.

Examples:

sage: from surface_dynamics import Stratum

sage: C = Stratum([4], k=1)
sage: O = C.single_cylinder_origami()
sage: O
(1,2,3,4,5)
(1,4,3,5,2)
sage: O.stratum() == Stratum([4], k=1)
True
sage: C = Stratum([2,0], k=1)
sage: O = C.single_cylinder_origami()
sage: O
(1,2,3,4)
(1,3,2,4)
sage: O.stratum() == Stratum([2], k=1)
True
single_cylinder_representative(alphabet=None, reduced=True)#

Returns a single cylinder permutation representative.

Returns a permutation representative of a square-tiled surface in this component having a single vertical cylinder and a single horizontal cylinder.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

INPUT:

  • alphabet – an optional alphabet for the permutation representative

  • reduced (boolean, default True) – whether to return a reduced permutation (ie without labels)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([2,0], k=1)
sage: p = C.single_cylinder_representative()
sage: p
0 1 2 3 4
4 3 1 2 0
sage: p.stratum() == C
True

sage: C = Stratum([3,1], k=1)
sage: p = C.single_cylinder_representative(alphabet=Alphabet(name='lower'))
sage: p
a b c d e f g
c f b g e d a
sage: p.stratum() == C
True

sage: C = Stratum([2], k=1)
sage: C.single_cylinder_representative()
Traceback (most recent call last):
...
ValueError: no 1,1-square-tiled surfaces in this stratum try again with H_2(2, 0)
sage: C = Stratum([1,1], k=1)
sage: C.single_cylinder_representative()
Traceback (most recent call last):
...
ValueError: no 1,1-square-tiled surfaces in this stratum try again with H_2(1^2, 0^2)
class surface_dynamics.flat_surfaces.abelian_strata.AbelianStratumComponent(stratum)#

Connected component of Abelian stratum.

Warning

Internal class! Do not use directly!

arithmetic_teichmueller_curves(n, primitive=False)#

Return the arithmetic Teichmueller curves in that component of stratum.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: A = Stratum([2], k=1).hyperelliptic_component(); A
H_2(2)^hyp
sage: for i in range(3,10):
....:     print("%d %d" % (i,len(A.arithmetic_teichmueller_curves(i))))
3 1
4 1
5 2
6 1
7 2
8 1
9 2

sage: A = Stratum([1,1], k=1).hyperelliptic_component(); A
H_2(1^2)^hyp
sage: for i in range(4,10):
....:    T = A.arithmetic_teichmueller_curves(i)
....:    T_prim = list(filter(lambda t:t.origami().is_primitive(), T))
....:    print("%d %d %d" % (i,len(T),len(T_prim)))
4 2 1
5 1 1
6 5 2
7 2 2
8 4 2
9 4 2

sage: A = Stratum([4], k=1).hyperelliptic_component(); A
H_3(4)^hyp
sage: for i in range(5,10):
....:    print("%d %d" % (i,len(A.arithmetic_teichmueller_curves(i))))
5 2
6 4
7 3
8 3
9 4
cylinder_diagram_iterator(ncyls=None, up_to_symmetry=True, force_computation=False)#

An iterator over the cylinder diagrams.

INPUT:

- ``ncyls`` -- (optional) a fixed number of cylinders
  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation – (default False) whether the database should be used or not

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: A = Stratum([1,1,1,1], k=1)
sage: cc = A.unique_component()
sage: it = cc.cylinder_diagram_iterator(3)
sage: cyl = next(it); cyl
(0,7)-(0,5) (1,6)-(1,4) (2,4,3,5)-(2,7,3,6)
sage: cyl.stratum_component()
H_3(1^4)^c
sage: cyl.ncyls()
3

Note that if you set force_computation to True the order of the iteration might be different and you might obtain cylinder diagram with some symmetries applied:

sage: # long time
sage: C1 = list(cc.cylinder_diagram_iterator(3, force_computation=False))
sage: C2 = list(cc.cylinder_diagram_iterator(3, force_computation=True))
sage: assert len(C1) == len(C2)
sage: isoms = []
sage: for c in C1:
....:     isom = []
....:     for i,cc in enumerate(C2):
....:         if c.is_isomorphic(cc) or \
....:            c.is_isomorphic(cc.horizontal_symmetry()) or \
....:            c.is_isomorphic(cc.vertical_symmetry()) or \
....:            c.is_isomorphic(cc.inverse()):
....:              isom.append(i)
....:     assert len(isom) == 1, isom
....:     isoms.extend(isom)
sage: assert sorted(isoms) == list(range(len(C1)))
cylinder_diagrams(ncyls=None, up_to_symmetry=True, force_computation=False)#

Return the list of cylinder diagrams associated to this component.

INPUT:

  • ncyls - integer or list of integers (default: None) - consider only the cylinder diagrams with a given number of cylinders.

  • up_to_symmetry - (boolean, default True) to return only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation – boolean (default False). If True, the database of cylinder diagrams is not used.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([1,1,1,1], k=1).unique_component(); C
H_3(1^4)^c
sage: for c in C.cylinder_diagrams(6): print(c)
(0,1)-(7) (2)-(0) (3)-(4) (4,7)-(5,6) (5)-(1) (6)-(2,3)
(0,1)-(7) (2)-(1) (3)-(0) (4,7)-(5,6) (5)-(4) (6)-(2,3)
(0,3)-(6,7) (1,2)-(4,5) (4)-(1) (5)-(3) (6)-(2) (7)-(0)
(0,3)-(6,7) (1,2)-(4,5) (4)-(3) (5)-(0) (6)-(2) (7)-(1)
cylinder_diagrams_number(ncyls=None, up_to_symmetry=True, force_computation=False)#

Return the number of cylinder diagrams.

INPUT:

  • ncyls - integer or list of integers (default: None) - restrict the counting to a given number of cylinders.

  • up_to_symmetry - (boolean, default True) to count only cylinder diagrams up to horizontal and vertical symmetry.

  • force_computation - (default: False) whether we use the database or compute explicitly using the generation algorithm.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([3,1], k=1).unique_component()
sage: C.cylinder_diagrams_number(1)
2
sage: C.cylinder_diagrams_number(2)
12
sage: C.cylinder_diagrams_number(3)
16
sage: C.cylinder_diagrams_number(4)
4

Note that when setting force_computation to True we got the same numbers:

sage: for i in range(1,5):
....:     print(C.cylinder_diagrams_number(i, force_computation=True))
2
12
16
4

sage: C = Stratum([6], k=1)
sage: C_hyp = C.hyperelliptic_component()
sage: C_odd = C.odd_component()
sage: C_even = C.even_component()
sage: for i in range(1,5): print(C.cylinder_diagrams_number(i))
16
76
130
67
sage: for i in range(1,5): print(C_hyp.cylinder_diagrams_number(i))
1
3
8
4
sage: for i in range(1,5): print(C_odd.cylinder_diagrams_number(i))
11
49
80
42

sage: for i in range(1,5):
....:     print(C_even.cylinder_diagrams_number(i, True, False))
4
24
42
21
sage: for i in range(1,5):                                      # long time
....:     print(C_even.cylinder_diagrams_number(i, True, True)) # long time
4
24
42
21
lyapunov_exponents(**kargs)#

Return the approximate Lyapunov exponents of the KZ-cocycle.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum([2], k=1).unique_component().lyapunov_exponents_approx(nb_iterations=2**21)  # abs tol .05
[1.000, 0.333]

sage: H4hyp, H4odd = Stratum([4], k=1).components()
sage: H4hyp.lyapunov_exponents_approx(nb_iterations=2**21) # abs tol .05
[1.000, 0.616, 0.184]
sage: H4odd.lyapunov_exponents_approx(nb_iterations=2**21) # abs tol .05
[1.000, 0.418, 0.182]
lyapunov_exponents_approx(**kargs)#

Return the approximate Lyapunov exponents of the KZ-cocycle.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum([2], k=1).unique_component().lyapunov_exponents_approx(nb_iterations=2**21)  # abs tol .05
[1.000, 0.333]

sage: H4hyp, H4odd = Stratum([4], k=1).components()
sage: H4hyp.lyapunov_exponents_approx(nb_iterations=2**21) # abs tol .05
[1.000, 0.616, 0.184]
sage: H4odd.lyapunov_exponents_approx(nb_iterations=2**21) # abs tol .05
[1.000, 0.418, 0.182]
one_cylinder_diagram()#

Return a diagram with one cylinder in this connected component.

The diagram returned is the one deduced from the method permutation_representative.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: A = Stratum([2,2], k=1).odd_component()
sage: c = A.one_cylinder_diagram()
sage: c
(0,5,1,3,2,4)-(0,5,4,3,2,1)
sage: c.stratum_component()
H_3(2^2)^odd

sage: A = Stratum([3,3], k=1).non_hyperelliptic_component()
sage: c = A.one_cylinder_diagram()
sage: c
(0,7,3,2,1,5,4,6)-(0,7,6,5,4,3,2,1)
sage: c.stratum_component()
H_4(3^2)^nonhyp
one_origami()#

Returns an origami in this component

The origami returned has the minimal number of squares and one cylinder. It is obtained from the permutation representative of the stratum.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([2,2], k=1).one_component()
sage: a.one_origami().stratum()
H_3(2^2)

sage: Stratum([3,2,1], k=1).unique_component().one_origami().stratum()
H_4(3, 2, 1)
origami_iterator(n, reduced=True, primitive=False)#

Iterator through the set of origamis with n squares in this stratum.

The output origamis are in normal form. But be careful as there may be repetition in the output!

INPUT:

  • n - integer - the number of squares

  • reduced - boolean (default: True)

  • primitive - boolean (default: False)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([6], k=1).even_component()
sage: it = cc.origami_iterator(13)
sage: o = next(it)
sage: o
(1,2,3,4,5,6,7,8,9,10,11,12,13)
(1,8,2)(3,12,6,11,5,13,7,9)(4,10)
sage: o.stratum_component()
H_4(6)^even
origamis(n, reduced=True, primitive=False)#

Return the set of origamis with n squares in this stratum.

INPUT:

  • n - integer - the number of squares

  • reduced - boolean (default: True)

  • primitive - boolean (default: False)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: H11_hyp = Stratum([1,1], k=1).hyperelliptic_component()
sage: len(H11_hyp.origamis(6))
88

sage: T6 = H11_hyp.arithmetic_teichmueller_curves(6)
sage: len(T6)
5
sage: sum(t.veech_group().index() for t in T6)
88

sage: H4_odd = Stratum([4], k=1).odd_component()
sage: len(H4_odd.origamis(6))
155
sage: T6 = H4_odd.arithmetic_teichmueller_curves(6)
sage: sum(t.veech_group().index() for t in T6)
155
permutation_representative(left_degree=None, reduced=True, alphabet=None, relabel=True)#

Returns the Zorich representative of this connected component.

Zorich constructs explicitly interval exchange transformations for each stratum in [Zor08].

INPUT:

  • reduced - boolean (default: True): whether you obtain a reduced or labelled permutation

  • alphabet - an alphabet or None: whether you want to specify an alphabet for your permutation

  • left_degree - the degree of the singularity on the left of the interval.

OUTPUT:

permutation – a permutation which lives in this component

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([1,1,1,1], k=1).unique_component()
sage: p = c.permutation_representative(alphabet="abcdefghi")
sage: p
a b c d e f g h i
e d c f i h g b a
sage: p.stratum_component()
H_3(1^4)^c

sage: cc = Stratum([3,2,1,0], k=1).unique_component()
sage: p = cc.permutation_representative(left_degree=3); p
0 1 2 3 4 5 6 7 8 9 10
4 3 7 6 5 10 9 8 2 0 1
sage: p.stratum_component()
H_4(3, 2, 1, 0)^c
sage: p.marking().left()
4
sage: p.rauzy_diagram()  # not tested
Rauzy diagram with 1060774 permutations

sage: p = cc.permutation_representative(left_degree=2); p
0 1 2 3 4 5 6 7 8 9 10
4 3 5 7 6 10 9 8 2 0 1
sage: p.stratum_component()
H_4(3, 2, 1, 0)^c
sage: p.marking().left()
3
sage: p.rauzy_diagram()  # not tested
Rauzy diagram with 792066 permutations

sage: p = cc.permutation_representative(left_degree=1); p
0 1 2 3 4 5 6 7 8 9 10
5 4 3 7 6 8 10 9 2 0 1
sage: p.stratum_component()
H_4(3, 2, 1, 0)^c
sage: p.marking().left()
2
sage: p.rauzy_diagram()  # not tested
Rauzy diagram with 538494 permutations

sage: p = cc.permutation_representative(left_degree=0); p
0 1 2 3 4 5 6 7 8 9 10
4 2 7 6 5 10 9 8 1 3 0
sage: p.stratum_component()
H_4(3, 2, 1, 0)^c
sage: p.marking().left()
1
sage: p.rauzy_diagram()  # not tested
Rauzy diagram with 246914 permutations
random_standard_permutation(nsteps=64)#

Perform a random walk on rauzy diagram stopped on a standard permutation.

INPUT:

  • nsteps - integer or None - perform nsteps and then stops as soon as a Strebel differential is found.

At each step, with probability 1/3 we perform one of the following moves:

  • exchange top,bottom and left,right (proba 1/10)

  • top rauzy move (proba 9/20)

  • bot rauzy move (proba 9/20)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([10], k=1).hyperelliptic_component() sage: p = C.random_standard_permutation(); p # random 0 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 0 sage: p.stratum_component() H_6(10)^hyp

sage: C = Stratum([6,4,2], k=1).odd_component(); C H_7(6, 4, 2)^odd sage: p = C.random_standard_permutation(); p # random 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 2 14 12 3 11 6 10 8 5 9 13 7 4 1 0 sage: p.stratum_component() H_7(6, 4, 2)^odd

sage: C = Stratum([2,2,2,2], k=1).even_component(); C H_5(2^4)^even sage: p = C.random_standard_permutation(); p # random 0 1 2 3 4 5 6 7 8 9 10 11 12 12 4 9 11 8 3 7 6 1 10 2 5 0 sage: p.stratum_component() H_5(2^4)^even

sage: C = Stratum([32], k=1).odd_component(); C H_17(32)^odd sage: p = C.random_standard_permutation(); p # random 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 30 10 3 32 19 11 28 4 14 24 15 21 20 9 12 25 6 2 29 26 23 27 13 8 1 18 17 16 31 7 22 5 0 sage: p.stratum_component() H_17(32)^odd

rauzy_class_cardinality(left_degree=None, reduced=True)#

Rauzy diagram cardinality for connected components.

Returns the cardinality of the extended Rauzy diagram associated to this connected component.

If left_degree is provided then it returns the cardinality of the Rauzy diagram with a singularity of that degree attached on the left. Otherwise it returns the cardinality of the extended Rauzy diagram.

INPUT:

  • left_degree - the degree to be attached to the singularity on the left

  • reduced - boolean (default: True) - consider the cardinality of reduced or extended Rauzy diagram

EXAMPLES:

sage: from surface_dynamics import *

sage: a = Stratum({1:4}, k=1).unique_component()
sage: a
H_3(1^4)^c
sage: a.rauzy_diagram()
Rauzy diagram with 1255 permutations
sage: a.rauzy_class_cardinality()
1255

sage: cc = Stratum([3,2,1], k=1).unique_component()
sage: cc.rauzy_diagram(left_degree=3)   # long time
Rauzy diagram with 96434 permutations
sage: cc.rauzy_class_cardinality(left_degree=3)
96434

sage: cc.rauzy_diagram(left_degree=2)   # long time
Rauzy diagram with 72006 permutations
sage: cc.rauzy_class_cardinality(left_degree=2)
72006

sage: cc.rauzy_diagram(left_degree=1)   # long time
Rauzy diagram with 48954 permutations
sage: cc.rauzy_class_cardinality(left_degree=1)
48954

sage: a = Stratum({1:8}, k=1).unique_component()
sage: a
H_5(1^8)^c
sage: a.rauzy_class_cardinality()
55184875

Cardinalities for labeled Rauzy classes instead of reduced:

sage: cc = Stratum([2,1,1], k=1).unique_component()
sage: cc.rauzy_diagram(left_degree=2, reduced=False)
Rauzy diagram with 3676 permutations
sage: cc.rauzy_class_cardinality(left_degree=2, reduced=False)
3676

sage: cc.rauzy_diagram(left_degree=1, reduced=False)
Rauzy diagram with 3774 permutations
sage: cc.rauzy_class_cardinality(left_degree=1,reduced=False)
3774

sage: cc = Stratum([2,1,1,0], k=1).unique_component()
sage: cc.rauzy_diagram(left_degree=2, reduced=False) # long time
Rauzy diagram with 33084 permutations
sage: cc.rauzy_diagram(left_degree=1, reduced=False) # long time
Rauzy diagram with 33966 permutations
sage: cc.rauzy_diagram(left_degree=0, reduced=False) # long time
Rauzy diagram with 30828 permutations

sage: cc.rauzy_class_cardinality(left_degree=2, reduced=False)
33084
sage: cc.rauzy_class_cardinality(left_degree=1, reduced=False)
33966
sage: cc.rauzy_class_cardinality(left_degree=0, reduced=False)
30828
rauzy_diagram(*args, **kwds)#

Returns the extended Rauzy diagram associated to this connected component.

OUTPUT:

rauzy diagram – the Rauzy diagram associated to this stratum

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([0], k=1).components()[0]
sage: r = c.rauzy_diagram()
single_cylinder_origami()#

Returns an origami associated to a single cylinder permutation representative.

Returns an origami in this connected (or non-hyperelliptic) component having a single vertical cylinder and a single horizontal cylinder.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

Examples:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([4], k=1).odd_component()
sage: O = cc.single_cylinder_origami()
sage: O
(1,2,3,4,5)
(1,4,3,5,2)
sage: O.stratum_component() == cc
True
sage: cc = Stratum([5,3], k=1).unique_component()
sage: O = cc.single_cylinder_origami()
sage: O
(1,2,3,4,5,6,7,8,9,10)
(1,9,8,10,6,7,4,3,5,2)
sage: O.stratum_component() == cc
True
sage: cc = Stratum([4,2], k=1).even_component()
sage: O = cc.single_cylinder_origami()
sage: O
(1,2,3,4,5,6,7,8)
(1,3,7,5,6,8,4,2)
sage: O.stratum_component() == cc
True
single_cylinder_representative(alphabet=None, reduced=True)#

Returns a single cylinder permutation representative.

Returns a cylindric permutation representative of this connected stratum (or non-hyperelliptic component) such that the associated square-tiled surface is made of a single cylinder of height one in both horizontal and vertical direction.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

INPUT:

  • alphabet – an optional alphabet for the permutation representative

  • reduced (boolean, default True) – whether to return a reduced permutation (ie without labels)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([1,1,1,1], k=1).unique_component()
sage: p = cc.single_cylinder_representative()
sage: p
0 1 2 3 4 5 6 7 8
2 6 5 3 1 8 4 7 0
sage: p.stratum_component() == cc
True

sage: cc = Stratum([2,1,1], k=1).unique_component()
sage: p = cc.single_cylinder_representative()
sage: p
0 1 2 3 4 5 6 7
2 6 4 1 7 5 3 0
sage: p.stratum_component() == cc
True

sage: cc = Stratum([3,3], k=1).non_hyperelliptic_component()
sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name='lower'))
sage: p
a b c d e f g h i
c i g f h e b d a
sage: p.stratum_component() == cc
True
spin()#

Return None since surfaces in this component have no spin.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([1,1,1,1], k=1).unique_component(); c
H_3(1^4)^c
sage: c.spin() is None
True
standard_permutations()#

Return the set of standard permutations.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([4], k=1).odd_component()
sage: C
H_3(4)^odd
sage: for p in C.standard_permutations(): print("%s\n***********" % p)
0 1 2 3 4 5
5 2 1 4 3 0
***********
0 1 2 3 4 5
5 3 1 4 2 0
***********
0 1 2 3 4 5
5 4 1 3 2 0
***********
0 1 2 3 4 5
5 2 4 1 3 0
***********
0 1 2 3 4 5
5 4 2 1 3 0
***********
0 1 2 3 4 5
5 2 4 3 1 0
***********
0 1 2 3 4 5
5 3 2 4 1 0
***********
standard_permutations_number(left_degree=None)#

Return the number of standard permutations in the Rauzy class associated to this connected component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([3,1], k=1).unique_component()
sage: sum(1 for p in cc.rauzy_diagram() if p.is_standard())
24
sage: cc.standard_permutations_number()
24

sage: sum(1 for p in cc.rauzy_diagram(left_degree=3) if p.is_standard())
16
sage: cc.standard_permutations_number(left_degree=3)
16

sage: sum(1 for p in cc.rauzy_diagram(left_degree=1) if p.is_standard())
8
sage: cc.standard_permutations_number(left_degree=1)
8

sage: cc = Stratum({1:10}, k=1).unique_component()
sage: cc
H_6(1^10)^c
sage: cc.standard_permutations_number()
59520825
surface_dynamics.flat_surfaces.abelian_strata.DeprecatedAbelianStratumConstructor(*l)#

TESTS:

sage: from surface_dynamics import AbelianStratum, Stratum

sage: s = AbelianStratum(0)
doctest:warning
...
UserWarning: AbelianStratum has changed its arguments in order to handle meromorphic and higher-order differentials; use Stratum instead
sage: s is loads(dumps(s))
True

sage: AbelianStratum(1,1,1,1) is AbelianStratum(1,1,1,1)
True
sage: AbelianStratum(1,1,1,1) is Stratum((1, 1, 1, 1), 1)
True
surface_dynamics.flat_surfaces.abelian_strata.EvenASC#

alias of EvenAbelianStratumComponent

class surface_dynamics.flat_surfaces.abelian_strata.EvenAbelianStratumComponent(stratum)#

Connected component of Abelian stratum with even spin structure.

Warning

Internal class! Do not use directly!

permutation_representative(left_degree=None, reduced=True, alphabet=None, relabel=True)#

Returns the Zorich representative of this connected component.

Zorich constructs explicitly interval exchange transformations for each stratum in [Zor08].

INPUT:

  • reduced - boolean (default: True): whether you obtain a reduced or labelled permutation

  • left_degree - integer (optional) - a specified degree of zero at the left of the interval.

  • alphabet - alphabet or None (default: None): whether you want to specify an alphabet for your representative

  • relabel - boolean (default: True) - if False uses Zorich’s natural numbering otherwise uses 0,1,…

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([6], k=1).even_component()
sage: c
H_4(6)^even
sage: p = c.permutation_representative(alphabet=range(8))
sage: p
0 1 2 3 4 5 6 7
5 4 3 2 7 6 1 0
sage: p.stratum_component()
H_4(6)^even
sage: c = Stratum([4,4], k=1).even_component()
sage: c
H_5(4^2)^even
sage: p = c.permutation_representative(alphabet=range(11))
sage: p
0 1 2 3 4 5 6 7 8 9 10
5 4 3 2 6 8 7 10 9 1 0
sage: p.stratum_component()
H_5(4^2)^even

Different markings lead to different Rauzy diagrams:

sage: c = Stratum([4,2,0], k=1).even_component()
sage: p = c.permutation_representative(left_degree=4); p
0 1 2 3 4 5 6 7 8 9
6 5 4 3 7 9 8 2 0 1
sage: p.stratum_component()
H_4(4, 2, 0)^even
sage: p.marking().left()
5
sage: p.rauzy_diagram()   # long time
Rauzy diagram with 66140 permutations

sage: p = c.permutation_representative(left_degree=2); p
0 1 2 3 4 5 6 7 8 9
7 6 5 4 3 9 8 2 0 1
sage: p.stratum_component()
H_4(4, 2, 0)^even
sage: p.marking().left()
3
sage: p.rauzy_diagram()   # long time
Rauzy diagram with 39540 permutations

sage: p = c.permutation_representative(left_degree=0); p
0 1 2 3 4 5 6 7 8 9
6 4 3 2 7 9 8 1 5 0
sage: p.stratum_component()
H_4(4, 2, 0)^even
sage: p.marking().left()
1
sage: p.rauzy_diagram()   # long time
Rauzy diagram with 11792 permutations
rauzy_class_cardinality(left_degree=None, reduced=True)#

Cardinality of rauzy diagram for even component of a stratum

INPUT:

  • left_degree - integer

  • reduced - boolean

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([6], k=1).even_component()
sage: c.rauzy_diagram()
Rauzy diagram with 2327 permutations
sage: c.rauzy_class_cardinality()
2327

sage: c = Stratum([4,2,0], k=1).even_component()
sage: c.rauzy_class_cardinality()
117472

sage: c.rauzy_diagram(left_degree=4)  # long time
Rauzy diagram with 66140 permutations
sage: c.rauzy_class_cardinality(left_degree=4)
66140
sage: c.rauzy_diagram(left_degree=4, reduced=False)  # long time
Rauzy diagram with 198420 permutations
sage: c.rauzy_class_cardinality(left_degree=4,reduced=False)
198420

sage: c.rauzy_class_cardinality(2)
39540
sage: c.rauzy_diagram(left_degree=2)  # long time
Rauzy diagram with 39540 permutations
sage: c.rauzy_diagram(left_degree=2, reduced=False)  # long time
Rauzy diagram with 197700 permutations
sage: c.rauzy_class_cardinality(left_degree=2, reduced=False)
197700

sage: c.rauzy_class_cardinality(0)
11792
sage: c.rauzy_diagram(left_degree=0)
Rauzy diagram with 11792 permutations
sage: c.rauzy_diagram(left_degree=0, reduced=False)  # long time
Rauzy diagram with 176880 permutations
sage: c.rauzy_class_cardinality(left_degree=0, reduced=False)
176880
single_cylinder_representative(alphabet=None, reduced=False)#

Returns a single cylinder permutation representative.

Returns a permutation representative of a square-tiled surface in this component having a single vertical cylinder and a single horizontal cylinder.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

INPUT:

  • alphabet – an optional alphabet for the permutation representative

  • reduced (boolean, default True) – whether to return a reduced permutation (ie without labels)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([6], k=1).even_component()
sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name='lower'))
sage: p
a b c d e f g h
c h g f d b e a
sage: p.stratum_component() == cc
True

sage: cc = Stratum([4,4], k=1).even_component()
sage: p = cc.single_cylinder_representative()
sage: p
0 1 2 3 4 5 6 7 8 9 10
2 10 7 5 8 1 9 6 4 3 0
sage: p.stratum_component() == cc
True
spin()#

Return 0.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([4,2], k=1).even_component(); c
H_4(4, 2)^even
sage: c.spin()
0
standard_permutations_number()#

Return the number of standard permutation of this even component.

EXAMPLES:

sage: from surface_dynamics import Stratum

For strata in genus 3, the number of standard permutations is reasonably small and the whole set can be computed:

sage: C = Stratum([6], k=1).even_component()
sage: len(C.standard_permutations())  # long time
44
sage: C.standard_permutations_number()
44

sage: C = Stratum([4,2], k=1).even_component()
sage: len(C.standard_permutations())   # long time
136
sage: C.standard_permutations_number()
136

sage: C = Stratum([2,2,2], k=1).even_component()
sage: len(C.standard_permutations())   # long time
92
sage: C.standard_permutations_number()
92

For higher genera, this number can be very big:

sage: C = Stratum([20], k=1).even_component()
sage: C.standard_permutations_number()
109398514483439999
surface_dynamics.flat_surfaces.abelian_strata.HypASC#

alias of HypAbelianStratumComponent

class surface_dynamics.flat_surfaces.abelian_strata.HypAbelianStratumComponent(stratum)#

Hyperelliptic component of Abelian stratum.

permutation_representative(left_degree=None, reduced=True, alphabet=None, relabel=True)#

Returns the Zorich representative of this connected component.

Zorich constructs explicitly interval exchange transformations for each stratum in [Zor08].

INPUT:

  • reduced - boolean (default: True): whether you obtain a reduced or labelled permutation

  • alphabet - alphabet or None (default: None): whether you want to specify an alphabet for your representative

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([0], k=1).hyperelliptic_component()
sage: p = c.permutation_representative()
sage: p
0 1
1 0
sage: p.stratum_component()
H_1(0)^hyp

sage: c = Stratum([0,0], k=1).hyperelliptic_component()
sage: p = c.permutation_representative(alphabet="abc")
sage: p
a b c
c b a
sage: p.stratum_component()
H_1(0^2)^hyp

sage: c = Stratum([2,2], k=1).hyperelliptic_component()
sage: p = c.permutation_representative(alphabet="ABCDEFGHIJKL")
sage: p
A B C D E F G
G F E D C B A
sage: c = Stratum([1,1,0], k=1).hyperelliptic_component()
sage: p = c.permutation_representative(left_degree=1); p
0 1 2 3 4 5
5 1 4 3 2 0
sage: p.marking().left()
2
sage: p.rauzy_diagram()
Rauzy diagram with 90 permutations

sage: p = c.permutation_representative(left_degree=0); p
0 1 2 3 4 5
5 3 2 1 4 0
sage: p.marking().left()
1
sage: p.rauzy_diagram()
Rauzy diagram with 20 permutations
random_standard_permutation(nsteps=None)#

In hyperelliptic component there is only one standard permutation.

rauzy_class_cardinality(left_degree=None, reduced=True)#

Return the cardinality of the extended Rauzy diagram associated to the hyperelliptic component

The cardinality of the Rauzy diagram or extended Rauzy diagram associated to H_{hyp}(2g-2,0^k) or H_{hyp}(g-1,g-1,0^k) depends only on the dimension d of the initial stratum mathcal{H}_{hyp}(2g-2) for which d=2g or mathcal{H}_{hyp}(g-1,g-1) for which d=2g+1 and the number of fake zeros k. The formula is

\[\binom{d+k+1}{k} (2^{d-1}-1) + d \binom{d+k}{k-1}\]

INPUT:

  • left_degree - integer - the degree of the singularity attached at the left of the interval.

  • reduced - boolean (default: True) - if False, consider labeled Rauzy diagrams instead of reduced.

EXAMPLES:

sage: from surface_dynamics import Stratum

The case of the torus is a little bit different:

sage: c = Stratum([0], k=1).hyperelliptic_component()
sage: c.rauzy_diagram()
Rauzy diagram with 1 permutation
sage: c.rauzy_class_cardinality()
1
sage: c = Stratum([0,0], k=1).hyperelliptic_component()
sage: c.rauzy_diagram()
Rauzy diagram with 3 permutations
sage: c.rauzy_class_cardinality()
3

Examples in genus 2:

sage: c = Stratum([2,0], k=1).hyperelliptic_component()
sage: c.rauzy_diagram()
Rauzy diagram with 46 permutations
sage: c.rauzy_class_cardinality()
46

sage: c.rauzy_diagram(left_degree=2)
Rauzy diagram with 35 permutations
sage: c.rauzy_class_cardinality(left_degree=2)
35

sage: c.rauzy_diagram(left_degree=0)
Rauzy diagram with 11 permutations
sage: c.rauzy_class_cardinality(left_degree=0)
11
sage: c.rauzy_diagram(left_degree=0, reduced=False)
Rauzy diagram with 33 permutations
sage: c.rauzy_class_cardinality(left_degree=0, reduced=False)
33

sage: c = Stratum([1,1,0,0], k=1).hyperelliptic_component()
sage: c.rauzy_diagram()
Rauzy diagram with 455 permutations
sage: c.rauzy_class_cardinality()
455

sage: c.rauzy_diagram(left_degree=1)
Rauzy diagram with 315 permutations
sage: c.rauzy_class_cardinality(left_degree=1)
315
sage: c.rauzy_diagram(left_degree=1, reduced=False)
Rauzy diagram with 630 permutations
sage: c.rauzy_class_cardinality(left_degree=1, reduced=False)
630

sage: c.rauzy_diagram(left_degree=0)
Rauzy diagram with 140 permutations
sage: c.rauzy_class_cardinality(left_degree=0)
140
sage: c.rauzy_diagram(left_degree=0, reduced=False)
Rauzy diagram with 560 permutations
sage: c.rauzy_class_cardinality(left_degree=0, reduced=False)
560

Other examples in higher genus:

sage: c = Stratum([12,0,0], k=1).hyperelliptic_component()
sage: c.rauzy_class_cardinality()
1114200
sage: c.rauzy_class_cardinality(left_degree=12, reduced=False)
1965840

sage: c = Stratum([14], k=1).hyperelliptic_component()
sage: c.rauzy_class_cardinality()
32767
single_cylinder_representative(alphabet=None, reduced=True)#

Returns a single cylinder permutation representative.

Returns a permutation representative of a square-tiled surface in this component having a single vertical cylinder and a single horizontal cylinder.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

INPUT:

  • alphabet – an optional alphabet for the permutation representative

  • reduced (boolean, default True) – whether to return a reduced permutation (ie without labels)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([2,0], k=1).hyperelliptic_component()
sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name='upper'))
sage: p
A B C D E
E D B C A
sage: p.stratum_component() == cc
True

sage: cc = Stratum({3:2,0:6}, k=1).hyperelliptic_component()
sage: p = cc.single_cylinder_representative()
sage: p
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
14 12 13 10 11 8 9 7 5 6 3 4 1 2 0
sage: p.stratum_component() == cc
True

sage: cc = Stratum([2], k=1).hyperelliptic_component()
sage: cc.single_cylinder_representative()
Traceback (most recent call last):
...
ValueError: no 1,1-square-tiled surfaces in this connected component try again with H_2(2, 0)^hyp
sage: cc = Stratum({3:2,0:5}, k=1).hyperelliptic_component()
sage: cc.single_cylinder_representative()
Traceback (most recent call last):
...
ValueError: no 1,1-square-tiled surfaces in this connected component try again with H_4(3^2, 0^6)^hyp
spin()#

Return the spin parity of hyperelliptic stratum.

EXAMPLES:

sage: from surface_dynamics import Stratum

For the strata H(2g-2):

sage: c = Stratum([0], k=1).hyperelliptic_component()
sage: c.spin()
1
sage: p = c.permutation_representative()
sage: p.arf_invariant()
1

sage: c = Stratum([2], k=1).hyperelliptic_component()
sage: c.spin()
1
sage: p = c.permutation_representative()
sage: p.arf_invariant()
1

sage: c = Stratum([4], k=1).hyperelliptic_component()
sage: c.spin()
0
sage: p = c.permutation_representative()
sage: p.arf_invariant()
0

For the strata H(g-1,g-1):

sage: c = Stratum([2,2], k=1).hyperelliptic_component()
sage: c.spin()
0
sage: p = c.permutation_representative()
sage: p.arf_invariant()
0

sage: c = Stratum([4,4], k=1).hyperelliptic_component()
sage: c.spin()
1
sage: p = c.permutation_representative()
sage: p.arf_invariant()
1
standard_permutations(reduced=True)#

Return the standard permutations in this hyperelliptic component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: Stratum([6], k=1).hyperelliptic_component().standard_permutations()
[0 1 2 3 4 5 6 7
 7 6 5 4 3 2 1 0]
standard_permutations_number()#

Return the number of standard permutations in this hyperelliptic component.

surface_dynamics.flat_surfaces.abelian_strata.NonHypASC#

alias of NonHypAbelianStratumComponent

class surface_dynamics.flat_surfaces.abelian_strata.NonHypAbelianStratumComponent(stratum)#

Non hyperelliptic component of Abelian stratum.

rauzy_class_cardinality(left_degree=None, reduced=True)#

Return the cardinality of Rauzy diagram associated to this non hyperelliptic component.

INPUT:

  • left_degree - integer

  • reduced - boolean (default: True)

EXAMPLES:

sage: from surface_dynamics import Stratum

Examples in genus 3:

sage: c = Stratum([3,3], k=1).non_hyperelliptic_component()
sage: c.rauzy_class_cardinality()
15568

sage: c = Stratum([3,3,0], k=1).non_hyperelliptic_component()
sage: c.rauzy_class_cardinality()
173723

sage: c.rauzy_diagram(left_degree=3)  # long time
Rauzy diagram with 155680 permutations
sage: c.rauzy_class_cardinality(left_degree=3)
155680
sage: c.rauzy_diagram(left_degree=3, reduced=False)  # not tested
Rauzy diagram with 311360 permutations
sage: c.rauzy_class_cardinality(left_degree=3, reduced=False)
311360

sage: c.rauzy_diagram(left_degree=0)  # long time
Rauzy diagram with 18043 permutations
sage: c.rauzy_class_cardinality(left_degree=0)
18043
sage: cc.rauzy_diagram(left_degree=0, reduced=False) # not tested
Rauzy diagram with 288688 permutations
sage: c.rauzy_class_cardinality(left_degree=0,reduced=False)
288688

When genus growths, the size of the Rauzy diagram becomes very big:

sage: c = Stratum([5,5], k=1).non_hyperelliptic_component()
sage: c.rauzy_class_cardinality()
136116680

sage: c = Stratum([7,7,0], k=1).non_hyperelliptic_component()
sage: c.rauzy_class_cardinality()
88484743236111
sage: c.rauzy_class_cardinality(left_degree=7, reduced=False)
334071852804864
standard_permutations_number()#

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: C = Stratum([3,3], k=1).non_hyperelliptic_component()
sage: len(C.standard_permutations())  # long time
275
sage: C.standard_permutations_number()
275

sage: C = Stratum([5,5], k=1).non_hyperelliptic_component()
sage: C.standard_permutations_number()
1022399

sage: C = Stratum([7,7], k=1).non_hyperelliptic_component()
sage: C.standard_permutations_number()
19229011199
surface_dynamics.flat_surfaces.abelian_strata.OddASC#

alias of OddAbelianStratumComponent

class surface_dynamics.flat_surfaces.abelian_strata.OddAbelianStratumComponent(stratum)#

Connected component of an Abelian stratum with odd spin parity.

permutation_representative(left_degree=None, reduced=True, alphabet=None, relabel=True)#

Returns the Zorich representative of this connected component.

A. Zorich constructs explicitly interval exchange transformations for each stratum in [Zor08].

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: a = Stratum([6], k=1).odd_component()
sage: p = a.permutation_representative()
sage: p
0 1 2 3 4 5 6 7
3 2 5 4 7 6 1 0
sage: p.stratum_component()
H_4(6)^odd
sage: a = Stratum([4,4], k=1).odd_component()
sage: p = a.permutation_representative()
sage: p
0 1 2 3 4 5 6 7 8 9 10
3 2 5 4 6 8 7 10 9 1 0
sage: p.stratum_component()
H_5(4^2)^odd

Different markings lead to different Rauzy diagrams:

sage: c = Stratum([4,2,0], k=1).odd_component()
sage: p = c.permutation_representative(left_degree=4); p
0 1 2 3 4 5 6 7 8 9
4 3 6 5 7 9 8 2 0 1
sage: p.stratum_component()
H_4(4, 2, 0)^odd
sage: p.marking().left()
5
sage: p.rauzy_diagram()   # not tested
Rauzy diagram with 147090 permutations

sage: p = c.permutation_representative(left_degree=2); p
0 1 2 3 4 5 6 7 8 9
4 3 5 7 6 9 8 2 0 1
sage: p.stratum_component()
H_4(4, 2, 0)^odd
sage: p.marking().left()
3
sage: p.rauzy_diagram()   # long time
Rauzy diagram with 87970 permutations

sage: p = c.permutation_representative(left_degree=0); p
0 1 2 3 4 5 6 7 8 9
4 2 6 5 7 9 8 1 3 0
sage: p.stratum_component()
H_4(4, 2, 0)^odd
sage: p.marking().left()
1
sage: p.rauzy_diagram()   # long time
Rauzy diagram with 27754 permutations
rauzy_class_cardinality(left_degree=None, reduced=True)#

Cardinality of rauzy diagram for odd component

INPUT:

  • left_degree - integer (optional)

  • reduced - boolean (default: True)

EXAMPLES:

sage: from surface_dynamics import Stratum

The genus must be at least 3 to have an odd component:

sage: c = Stratum([4], k=1).odd_component()
sage: c.rauzy_diagram()
Rauzy diagram with 134 permutations
sage: c.rauzy_class_cardinality()
134
sage: c = Stratum([4,0], k=1).odd_component()
sage: c.rauzy_diagram()
Rauzy diagram with 1114 permutations
sage: c.rauzy_class_cardinality()
1114

sage: c = Stratum([2,2], k=1).odd_component()
sage: c.rauzy_diagram()
Rauzy diagram with 294 permutations
sage: c.rauzy_class_cardinality()
294

sage: c = Stratum([2,2,0], k=1).odd_component()
sage: c.rauzy_class_cardinality()
2723

sage: c.rauzy_diagram(left_degree=2)
Rauzy diagram with 2352 permutations
sage: c.rauzy_class_cardinality(left_degree=2)
2352
sage: c.rauzy_diagram(left_degree=2, reduced=False)
Rauzy diagram with 7056 permutations
sage: c.rauzy_class_cardinality(left_degree=2, reduced=False)
7056

sage: c.rauzy_diagram(left_degree=0)
Rauzy diagram with 371 permutations
sage: c.rauzy_class_cardinality(left_degree=0)
371
sage: c.rauzy_diagram(left_degree=0, reduced=False)
Rauzy diagram with 6678 permutations
sage: c.rauzy_class_cardinality(left_degree=0, reduced=False)
6678

Example in higher genus for which an explicit computation of the Rauzy diagram would be very long:

sage: c = Stratum([4,2,0], k=1).odd_component()
sage: c.rauzy_class_cardinality()
262814
sage: c = Stratum([4,4,4], k=1).odd_component()
sage: c.rauzy_class_cardinality()
24691288838
sage: c.rauzy_class_cardinality(left_degree=4, reduced=False)
1234564441900
single_cylinder_representative(alphabet=None, reduced=True)#

Returns a single cylinder permutation representative.

Returns a permutation representative of a square-tiled surface in this component having a single vertical cylinder and a single horizontal cylinder.

Such representatives were constructed for every stratum of Abelian differentials by Jeffreys [Jef19].

INPUT:

  • alphabet – an optional alphabet for the permutation representative

  • reduced (boolean, default True) – whether to return a reduced permutation (ie without labels)

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: cc = Stratum([4], k=1).odd_component()
sage: p = cc.single_cylinder_representative(alphabet=Alphabet(name='upper'))
sage: p
A B C D E F
C F E B D A
sage: p.stratum_component() == cc
True

sage: cc = Stratum([6,2], k=1).odd_component()
sage: p = cc.single_cylinder_representative()
sage: p
0 1 2 3 4 5 6 7 8 9 10
2 5 4 6 3 8 10 7 1 9 0
sage: p.stratum_component() == cc
True
spin()#

Returns 1 which is, by definition, the spin parity of this stratum component.

EXAMPLES:

sage: from surface_dynamics import Stratum

sage: c = Stratum([4], k=1).odd_component(); c
H_3(4)^odd
sage: c.spin()
1
standard_permutations_number()#

Return the number of standard permutation of this even component.

EXAMPLES:

sage: from surface_dynamics import Stratum

In genus 2, there are two strata which contains an odd component:

sage: C = Stratum([4], k=1).odd_component()
sage: len(C.standard_permutations())
7
sage: C.standard_permutations_number()
7

sage: C = Stratum([2,2], k=1).odd_component()
sage: len(C.standard_permutations())
11
sage: C.standard_permutations_number()
11

In genus 3, the number of standard permutations is reasonably small and the whole set can be computed:

sage: C = Stratum([6], k=1).odd_component()
sage: len(C.standard_permutations())   # long time
135
sage: C.standard_permutations_number()
135

sage: C = Stratum([4,2], k=1).odd_component()
sage: len(C.standard_permutations())   # long time
472
sage: C.standard_permutations_number()
472

sage: C = Stratum([2,2,2], k=1).odd_component()
sage: len(C.standard_permutations())   # long time
372
sage: C.standard_permutations_number()
372

For higher genera, this number can be very big:

sage: C = Stratum([8,6,4,2], k=1).odd_component()
sage: C.standard_permutations_number()
26596699869748377600