generators
#
List of common origamis
Usage#
To see a list of all origami constructors, type “origamis.” or “pillowcases.” and then press the tab key. The documentation for each constructor includes information about each origami, which provides a useful reference.
Organization#
The constructors available in this database are organized as follows
- class surface_dynamics.flat_surfaces.origamis.generators.OrigamiGenerators#
Examples of origamis.
- static CyclicCover(a, M=None)#
Return the Abelian differential associated to the quadruple
a
INPUT:
a
- quadruple of integersM
- positive integer (default: None)
EXAMPLES:
sage: from surface_dynamics import *
There are two well known cyclic covers with completely degenerated Lyapunov spectrum:
sage: o = origamis.CyclicCover([1,1,1,1]) sage: o.sum_of_lyapunov_exponents() 1 sage: o = origamis.CyclicCover([1,1,1,3]) sage: o.sum_of_lyapunov_exponents() 1
Some examples with Veech group SL(2,Z) (this happen if and only if the entries of the vector is of the form
[x,x,x,y]
):sage: for a in [[1,1,1,5],[1,1,1,7],[1,3,3,3],[1,1,1,9],[1,1,1,11],[3,3,3,5]]: ....: o = origamis.CyclicCover(a) ....: assert o.veech_group().index() == 1 ....: print(o.nb_squares(), o.stratum_component()) 16 H_7(3^4)^c 20 H_9(4^4)^odd 20 H_9(4^4)^odd 24 H_10(5^3, 1^3)^c 28 H_13(6^4)^odd 28 H_13(6^4)^odd
- static EierlegendeWollmilchsau()#
Eierlegende Wollmilchsau origami.
This origami is associated to the quaternion group and was discovered by Gaby Schmithüsen.
EXAMPLES:
sage: from surface_dynamics import * sage: o = origamis.EierlegendeWollmilchsau() sage: o Eierlegende Wollmilchsau sage: print(str(o)) (1,2,3,4)(5,6,7,8) (1,5,3,7)(2,8,4,6) sage: o.veech_group().index() 1 sage: o.sum_of_lyapunov_exponents() 1 sage: oo = origamis.CyclicCover([1,1,1,1]) sage: o.is_isomorphic(oo) True
- static Escalator(n)#
Escalator origamis
The escalator origami has 2n squares and is defined by
r = (1 2)(3 4) … (2n-1 2n) u = (2 3)(4 5) … (2n 1)
EXAMPLES:
sage: from surface_dynamics import * sage: o = origamis.Escalator(3) sage: o Escalator with 3 steps sage: print(str(o)) (1,2)(3,4)(5,6) (1,6)(2,3)(4,5) sage: o.veech_group().index() 3
- static Heisenberg(p)#
Return the Heisenberg origami.
EXAMPLES:
sage: from surface_dynamics import * sage: h2 = origamis.Heisenberg(2) sage: h2.stratum_component() H_3(1^4)^c sage: h2.veech_group().index() 3 sage: h2.sum_of_lyapunov_exponents() 2 sage: h3 = origamis.Heisenberg(3) sage: h3.stratum_component() H_10(2^9)^even sage: h3.veech_group().index() 1 sage: h3.sum_of_lyapunov_exponents() 5 sage: h5 = origamis.Heisenberg(5) sage: h5.stratum_component() H_51(4^25)^even sage: h5.veech_group().index() 1 sage: h5.sum_of_lyapunov_exponents() 15
- static Podium(data)#
If
data
is an integer than the standard podium withdata
steps is returned. Otherwise,data
should be a weakly decreasing list of integers (i.e. a integer partition).EXAMPLES:
sage: from surface_dynamics import * sage: o = origamis.Podium([3,3,2,1]) sage: o Podium origami with partition [3, 3, 2, 1] sage: print(o) (1,2,3)(4,5,6)(7,8)(9) (1,4,7,9)(2,5,8)(3,6)
- static ProjectiveLine(p, r=None, u=None)#
Return the projective line with action given by the matrices
r
andu
on the projective line over the field withp
elements.If
r
andu
are None, then r and u are chosen to be\[r: z \mapsto z+1 \qquad u: z \mapsto 1/z\]The monodromy of this origami is included in PGL(2,ZZ/pZZ).
EXAMPLES:
sage: from surface_dynamics import *
By default, the matrix used to generate the projective line origami are given by z -> z+1 and z -> 1/z which gives a family of origamis which belongs to the strata
H(2^k)
:sage: o = origamis.ProjectiveLine(3); o Projective line origami on GF(3) r = [1 1] u = [0 1] [0 1] [1 0] sage: o.stratum() H_2(2) sage: o.veech_group().index() 9 sage: o.sum_of_lyapunov_exponents() 4/3 sage: o = origamis.ProjectiveLine(5); o Projective line origami on GF(5) r = [1 1] u = [0 1] [0 1] [1 0] sage: o.stratum() H_3(2^2) sage: o.veech_group().index() 9 sage: o.sum_of_lyapunov_exponents() 5/3 sage: o = origamis.ProjectiveLine(7); o Projective line origami on GF(7) r = [1 1] u = [0 1] [0 1] [1 0] sage: o.stratum() H_3(2^2) sage: o.veech_group().index() 45 sage: o.sum_of_lyapunov_exponents() 5/3
Any invertible matrix mod p can be chosen to generate the origami:
sage: r = matrix([[1,3],[0,1]]) sage: u = matrix([[1,0],[3,1]]) sage: o = origamis.ProjectiveLine(5,r,u); o Projective line origami on GF(5) r = [1 3] u = [1 0] [0 1] [3 1] sage: o.veech_group().index() 10 sage: o.sum_of_lyapunov_exponents() 9/5 sage: o.stratum_component() H_3(4)^hyp
- ShresthaWang()#
An origami with Veech group SL(2,Z) that is not normal.
This is the second example page 9 of https://arxiv.org/abs/1902.08214
EXAMPLES:
sage: from surface_dynamics import origamis sage: o = origamis.ShresthaWang() sage: o.nb_squares() 16 sage: o (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14)(15,16) (1,8,5,15,13,12)(2,16,14,9,6,7)(3,10)(4,11) sage: o.stratum_component() H_4(2^3)^odd sage: o.veech_group().index() 1 sage: o.automorphism_group().cardinality() 1
And this example is not a cyclic cover:
sage: o.is_isomorphic(origamis.CyclicCover([1,1,1,5])) False
- static Stair(n)#
Stair origamis
The stair origami with n=2k squares is defined by the permutations
r = (1 2)(3 4) … (n-1 n) u = (1)(2 3) … (n-2 n-1)(n)
The stair origamis with n=2k+1 squares is defined by the permutations
r = (1 2)(3 4) … (n-2 n-1)(n) u = (1)(2 3) … (n-1 n-2)
EXAMPLES:
sage: from surface_dynamics import * sage: o = origamis.Stair(4) sage: o Stair origami with 4 squares sage: print(str(o)) (1,2)(3,4) (1)(2,3)(4) sage: o = origamis.Stair(5) sage: o Stair origami with 5 squares sage: print(str(o)) (1,2)(3,4)(5) (1)(2,3)(4,5)