quadratic_strata
#
Strata of quadratic differentials on Riemann surfaces
More precisely, we are interested in meromorphic quadratic differentials with at most simple poles on closed compact connected Riemann surfaces, which are not globally the square of an abelian differential.
The moduli space of such quadratic differentials on Riemann surfaces of a given genus is a complex orbifold, stratified by the degrees of zeros (zeros of degree -1, or simple poles, being allowed). The strata themselves are complex orbifolds. Most strata are connected but some (infinitely many) are not.
A stratum corresponds to the Sage object
QuadraticStratum
.
The classification of connected components of strata of quadratic differentials was established by Erwan Lanneau in [Lan08], after a similar classification was established by Kontsevich and Zorich in [KonZor03] in the Abelian case.
Each stratum has one or two connected components and each
component is associated to an extended Rauzy class. The
components()
method gives the decomposition of a stratum into its connected components.
A representative for each connected component of stratum is given by Zorich in [Zor08].
This is implemented here following [Zor08]:
genus zero stratum
permutation_representative()
genus one stratum
permutation_representative()
genus two hyperellitic component
permutation_representative()
genus two non-hyperellitic component
permutation_representative()
connected component
permutation_representative()
hyperelliptic component
permutation_representative()
non-hyperelliptic component is similar to connected components
regular component of exceptional stratum
permutation_representative()
irregular component of exceptional stratum
permutation_representative()
The inverse operation, i.e., starting from a permutation, determine
the connected component it lives in, is partially written in [KonZor03].
See:
stratum_component()
.
The code here implements the descriptions in [Zor08]. Zorich already implemented all this for Mathematica in [ZS].
See also abelian_strata
for Abelian strata.
AUTHORS:
Vincent Delecroix (2009-09-29): initial version
Samuel Lelievre (2010-10-08): quadratic strata
EXAMPLES:
sage: from surface_dynamics import *
Construction of a stratum from a list of singularity degrees:
sage: a = Stratum([2,2], k=2)
sage: a
Q_2(2^2)
sage: a.surface_genus()
2
sage: a = Stratum([4,3,2,2,1], k=2)
sage: a
Q_4(4, 3, 2^2, 1)
sage: a.surface_genus()
4
By convention, the degrees are always written in decreasing order:
sage: a1 = Stratum([7,5,3,1], k=2)
sage: a1
Q_5(7, 5, 3, 1)
sage: a2 = Stratum([3,1,7,5], k=2)
sage: a2
Q_5(7, 5, 3, 1)
sage: a1 == a2
True
List the connected components of a stratum:
sage: a = Stratum([6,2], k=2)
sage: a.components()
(Q_3(6, 2)^hyp, Q_3(6, 2)^nonhyp)
sage: a = Stratum([12], k=2)
sage: cc = a.components()
sage: cc
(Q_4(12)^reg, Q_4(12)^irr)
sage: for c in cc:
....: print(c)
....: print(c.permutation_representative())
Q_4(12)^reg
0 1 2 1 2 3 4 3 4 5
5 6 7 6 7 0
Q_4(12)^irr
0 1 2 3 4 5 6 5
7 6 4 7 3 2 1 0
sage: a = Stratum([1, 1, 1, 1], k=2)
sage: a.components()
(Q_2(1^4)^hyp,)
sage: c = a.components()[0]
sage: p = c.permutation_representative(); p
0 1 2 3 1 4 5
2 6 5 4 6 3 0
- surface_dynamics.flat_surfaces.quadratic_strata.CQSC#
alias of
ConnectedQuadraticStratumComponent
- class surface_dynamics.flat_surfaces.quadratic_strata.ConnectedQuadraticStratumComponent(stratum)#
Connected component of stratum of quadratic differentials.
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
NOTES:
The representative is made by constructing two lists l0 and l1 which correspond to a generalized permutation representative for the stratum with simple zeros, and then erasing some elements from l0 and l1 (this corresponds to collapsing saddle connections to merge zeros). It may be possible to find a faster way to obtain the desired l0 and l1 than by constructing the long versions and erasing symbols; the current implementation has a loop with “del l0[l0.index(i)]” and “del l1[l1.index(i)]”.
EXAMPLES:
sage: from surface_dynamics import * sage: cc = Stratum([6,-1,-1], k=2).non_hyperelliptic_component() sage: p = cc.permutation_representative(); p 0 1 2 1 3 3 4 4 5 5 2 0 sage: p.stratum_component() Q_2(6, -1^2)^nonhyp sage: cc = Stratum({3: 2, -1: 2}, k=2).non_hyperelliptic_component() sage: p = cc.permutation_representative(); p 0 1 2 1 3 4 3 5 5 4 6 6 2 0 sage: p.stratum_component() Q_2(3^2, -1^2)^nonhyp sage: cc = Stratum([8], k=2).unique_component() sage: p = cc.permutation_representative(); p 0 1 2 1 2 3 4 5 4 5 3 0 sage: p.stratum_component() Q_3(8)^c sage: Q = Stratum([4,4], k=2).unique_component() sage: p = Q.permutation_representative(); p 0 1 2 3 2 3 4 5 6 5 6 1 4 0 sage: p.stratum_component() Q_3(4^2)^c sage: Q = Stratum({12:1,-1:4}, k=2).unique_component() sage: p = Q.permutation_representative() sage: p 0 1 2 1 2 3 3 4 4 5 5 6 6 7 8 9 8 9 7 0 sage: p.stratum() Q_3(12, -1^4)
- surface_dynamics.flat_surfaces.quadratic_strata.DeprecatedQuadraticStratumConstructor(*l, **kwds)#
TESTS:
sage: from surface_dynamics import * sage: QuadraticStratum(-1,-1,-1,-1) is QuadraticStratum({-1:4}) doctest:warning ... UserWarning: QuadraticStratum has changed its arguments in order to handle meromorphic and higher-order differentials; use Stratum instead True sage: QuadraticStratum(-1,-1,-1,-1) is Stratum((-1,-1,-1,-1), 2) True
- surface_dynamics.flat_surfaces.quadratic_strata.GOQSC#
alias of
GenusOneQuadraticStratumComponent
- surface_dynamics.flat_surfaces.quadratic_strata.GTHQSC#
- surface_dynamics.flat_surfaces.quadratic_strata.GTNQSC#
- surface_dynamics.flat_surfaces.quadratic_strata.GZQSC#
alias of
GenusZeroQuadraticStratumComponent
- class surface_dynamics.flat_surfaces.quadratic_strata.GenusOneQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum({2: 1, -1: 2}, k=2).permutation_representative() 0 1 2 2 1 3 3 0 sage: Stratum({3: 1, -1: 3}, k=2).permutation_representative() 0 1 2 2 3 3 1 4 4 0 sage: Stratum({1: 2, -1: 2}, k=2).permutation_representative() 0 1 2 3 3 2 1 4 4 0 sage: Q = Stratum({2: 1, 1: 1, -1: 3}, k=2) sage: Q.permutation_representative(alphabet='abcdef') a b c c d e e d b f f a
TESTS:
sage: from surface_dynamics import * sage: Stratum({1: 1, -1: 1}, k=2).permutation_representative() Traceback (most recent call last): ... EmptySetError: The stratum is empty sage: Q = Stratum([2,-1,-1,0], k=2) sage: p = Q.permutation_representative() sage: p 0 1 2 3 3 2 4 4 0 1 sage: p.stratum() == Q True
- class surface_dynamics.flat_surfaces.quadratic_strata.GenusTwoHyperellipticQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
TESTS:
sage: from surface_dynamics import *
sage: Q = Stratum({1: 4}, k=2) sage: H = Q.hyperelliptic_component() sage: H.permutation_representative() 0 1 2 3 1 4 5 2 6 5 4 6 3 0
sage: Q = Stratum([2,1,1], k=2) sage: H = Q.hyperelliptic_component() sage: H.permutation_representative(alphabet=’abcdef’) a b c b d e f e d f c a
sage: Q = Stratum([2,2], k=2) sage: H = Q.hyperelliptic_component() sage: H.permutation_representative() 0 1 2 1 3 4 3 4 2 0
- class surface_dynamics.flat_surfaces.quadratic_strata.GenusTwoNonhyperellipticQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
TESTS:
sage: from surface_dynamics import * sage: Q = Stratum({6: 1, -1: 2}, k=2) sage: N = Q.non_hyperelliptic_component() sage: N.permutation_representative() 0 1 2 1 3 3 4 4 5 5 2 0 sage: Q = Stratum({3: 2, -1: 2}, k=2) sage: N = Q.non_hyperelliptic_component() sage: N.permutation_representative() 0 1 2 1 3 4 3 5 5 4 6 6 2 0
- class surface_dynamics.flat_surfaces.quadratic_strata.GenusZeroQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([-1,-1,-1,-1], k=2).permutation_representative() 0 1 1 2 2 0 sage: Stratum({1:1, -1:5}, k=2).permutation_representative() 0 1 1 2 2 3 3 4 4 0 sage: Stratum({2:1, -1:6}, k=2).permutation_representative() 0 1 1 2 2 3 3 4 4 5 5 0 sage: Stratum({1:2, -1:6}, k=2).permutation_representative() 0 1 1 2 2 3 4 4 5 5 3 6 6 0 sage: Stratum({2:1, 1:1, -1:7}, k=2).permutation_representative() 0 1 1 2 2 3 3 4 5 5 6 6 4 7 7 0
- surface_dynamics.flat_surfaces.quadratic_strata.HQSC#
- class surface_dynamics.flat_surfaces.quadratic_strata.HyperellipticQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
EXAMPLES:
sage: from surface_dynamics import * sage: cc = Stratum({6:1, -1:2}, k=2).hyperelliptic_component() sage: cc.permutation_representative() 0 1 2 3 4 1 5 4 3 2 5 0 sage: cc = Stratum({3: 2, -1: 2}, k=2).hyperelliptic_component() sage: cc.permutation_representative() 0 1 2 3 4 5 1 6 5 4 3 2 6 0 sage: cc = Stratum([10,10], k=2).hyperelliptic_component() sage: cc.permutation_representative() 0 1 2 3 4 5 6 1 7 8 9 10 11 11 10 9 8 7 12 6 5 4 3 2 12 0
- surface_dynamics.flat_surfaces.quadratic_strata.IEQSC#
- class surface_dynamics.flat_surfaces.quadratic_strata.IrregularExceptionalQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
EXAMPLES:
sage: from surface_dynamics import * sage: cc = Stratum([9,-1], k=2).irregular_component() sage: p = cc.permutation_representative(); p 0 1 2 3 4 1 2 3 4 5 5 6 6 0 sage: p.stratum_component() # optional Q_3(9, -1)^irr sage: cc = Stratum([6,3,-1], k=2).irregular_component() sage: p = cc.permutation_representative(); p 0 1 2 3 4 5 1 2 3 4 5 6 6 7 7 0 sage: p.stratum_component() Q_3(6, 3, -1)^irr sage: cc = Stratum([12], k=2).irregular_component() sage: p = cc.permutation_representative(); p 0 1 2 3 4 5 6 5 7 6 4 7 3 2 1 0 sage: p.stratum_component() Q_4(12)^irr
- surface_dynamics.flat_surfaces.quadratic_strata.NQSC#
- class surface_dynamics.flat_surfaces.quadratic_strata.NonhyperellipticQuadraticStratumComponent(stratum)#
Non hyperelliptic component of stratum of quadratic differentials.
- surface_dynamics.flat_surfaces.quadratic_strata.QSC#
alias of
QuadraticStratumComponent
- surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStrata(genus=None, dimension=None, min_nb_poles=None, max_nb_poles=None, nb_poles=None, fake_zeros=False)#
Quadratic strata.
INPUT:
genus
- a non negative integer or Nonedimension
- a non negative integer or Nonemin_nb_poles
,max_nb_poles
- the minimum and maximum number of poles allowednb_poles
- integer - the number of poles (if the option is set then the optionsmin_nb_poles
andmax_nb_poles
are ignored)fake_zeros
- boolean - whether to allow fake zeros or not
EXAMPLES:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=2); Q Quadratic strata of genus 2 surfaces sage: Q.cardinality() +Infinity sage: i = iter(Q) sage: next(i) Q_2(2^2) sage: next(i) Q_2(2, 1^2) sage: next(i) Q_2(1^4) sage: next(i) Q_2(5, -1) sage: Q = QuadraticStrata(dimension=5); Q Quadratic strata of dimension 5 sage: Q = QuadraticStrata(genus=3,max_nb_poles=6); Q Quadratic strata of genus 3 surfaces with at most 6 poles sage: Q.cardinality() 463 sage: for q in Q: print(q) Q_3(8) Q_3(7, 1) Q_3(6, 2) ... Q_3(2^2, 1^10, -1^6) Q_3(2, 1^12, -1^6) Q_3(1^14, -1^6) sage: Q = QuadraticStrata(genus=2,nb_poles=0); Q Quadratic strata of genus 2 surfaces with no pole sage: for q in Q: print(q) Q_2(2^2) Q_2(2, 1^2) Q_2(1^4) sage: Q = QuadraticStrata(dimension=7,min_nb_poles=1,max_nb_poles=3); Q Quadratic strata of dimension 7 with at least 1 and at most 3 poles sage: for q in Q: print(q) Q_3(8, 1, -1) Q_3(7, 2, -1) Q_3(6, 3, -1) Q_3(5, 4, -1) Q_2(2, 1^3, -1) Q_3(10, -1^2) Q_2(4, 1^2, -1^2) Q_2(3, 2, 1, -1^2) Q_2(2^3, -1^2) Q_2(6, 1, -1^3) Q_2(5, 2, -1^3) Q_2(4, 3, -1^3) sage: Q = QuadraticStrata(dimension=6, genus=0) sage: Q Quadratic strata of genus 0 surfaces and dimension 6 sage: for q in Q: print(q) Q_0(1^2, -1^6) Q_0(3, -1^7) sage: Q = QuadraticStrata(dimension=5, genus=1, fake_zeros=True, nb_poles=0) sage: for q in Q: print(q)
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStrata_class#
Base class for strata of quadratic differentials.
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStrata_d(dimension, min_nb_poles, max_nb_poles, fake_zeros)#
Strata with prescribed dimension.
EXAMPLES:
sage: from surface_dynamics import * sage: for q in QuadraticStrata(dimension=5): print(q) Q_3(8) Q_2(2, 1^2) Q_2(4, 1, -1) Q_2(3, 2, -1) Q_2(6, -1^2) Q_1(2, 1, -1^3) Q_1(4, -1^4) Q_0(2, -1^6) sage: Q = QuadraticStrata(dimension=6,nb_poles=1); Q Quadratic strata of dimension 6 with 1 pole sage: for q in Q: print(q) Q_3(9, -1) Q_2(3, 1^2, -1) Q_2(2^2, 1, -1)
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStrata_g(genus, min_nb_poles=None, max_nb_poles=None)#
Stratas of genus g surfaces.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=3); Q Quadratic strata of genus 3 surfaces sage: Q.cardinality() +Infinity sage: i = iter(Q) sage: next(i) Q_3(8) sage: Q = QuadraticStrata(genus=2,max_nb_poles=1); Q Quadratic strata of genus 2 surfaces with at most 1 pole sage: Q.list() [Q_2(2^2), Q_2(2, 1^2), Q_2(1^4), Q_2(5, -1), Q_2(4, 1, -1), Q_2(3, 2, -1), Q_2(3, 1^2, -1), Q_2(2^2, 1, -1), Q_2(2, 1^3, -1), Q_2(1^5, -1)] sage: Q = QuadraticStrata(genus=4,nb_poles=3); Q Quadratic strata of genus 4 surfaces with 3 poles sage: Q.cardinality() 176
- an_element_()#
Return the first element of this list of strata.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=4); Q Quadratic strata of genus 4 surfaces sage: Q.first() Q_4(12) sage: Q = QuadraticStrata(genus=3,nb_poles=1); Q Quadratic strata of genus 3 surfaces with 1 pole sage: Q.first() Q_3(9, -1) sage: Q = QuadraticStrata(genus=3,min_nb_poles=2); Q Quadratic strata of genus 3 surfaces with at least 2 poles sage: Q.first() Q_3(10, -1^2)
- first()#
Return the first element of this list of strata.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=4); Q Quadratic strata of genus 4 surfaces sage: Q.first() Q_4(12) sage: Q = QuadraticStrata(genus=3,nb_poles=1); Q Quadratic strata of genus 3 surfaces with 1 pole sage: Q.first() Q_3(9, -1) sage: Q = QuadraticStrata(genus=3,min_nb_poles=2); Q Quadratic strata of genus 3 surfaces with at least 2 poles sage: Q.first() Q_3(10, -1^2)
- last()#
Return the last element of this list of strata.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=2, nb_poles=0); Q Quadratic strata of genus 2 surfaces with no pole sage: Q.last() Q_2(1^4) sage: Q = QuadraticStrata(genus=0); Q Quadratic strata of genus 0 surfaces sage: Q.last() Traceback (most recent call last): ... NotImplementedError: infinite list
TESTS:
sage: from surface_dynamics import * sage: Q = QuadraticStrata(genus=1,nb_poles=2) sage: Q.list()[-1] == Q.last() True sage: Q = QuadraticStrata(genus=1,max_nb_poles=2) sage: Q.list()[-1] == Q.last() True sage: Q = QuadraticStrata(genus=0,nb_poles=10) sage: Q.list()[-1] == Q.last() True
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStrata_gd(genus, dimension, min_nb_poles, max_nb_poles, fake_zeros)#
Quadratic strata with presrcribed genus and dimension.
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStratum(signature, k=1)#
Stratum of quadratic differentials.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = Stratum([15,-1,-1,-1], k=2) sage: Q Q_4(15, -1^3) sage: Q.components() (Q_4(15, -1^3)^c,) sage: Q = Stratum([6,6], k=2) sage: Q Q_4(6^2) sage: Q.components() (Q_4(6^2)^hyp, Q_4(6^2)^reg, Q_4(6^2)^irr)
- has_hyperelliptic_component()#
Returns True if and only if self has a connected component which contains only hyperelliptic surfaces.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([2,2], k=2).has_hyperelliptic_component() True sage: Stratum([3,1], k=2).has_hyperelliptic_component() False
- has_non_hyperelliptic_component()#
Test whether this stratum has a non hyperelliptic component.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([10,10], k=2).has_non_hyperelliptic_component() True sage: Stratum([6,6], k=2).has_non_hyperelliptic_component() False
- has_regular_and_irregular_components()#
Test whether this component has a pair of regular, irregular components.
The list of strata of quadratic differentials that admit such a pair are:
in genus 3: Q(9,-1), Q(6,3,-1), Q(3,3,3,-1) in genus 4: Q(12), Q(9,3), Q(6,6), Q(6,3,3), Q(3,3,3,3)
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([9,-1], k=2).has_regular_and_irregular_components() True sage: Stratum([11,1], k=2).has_regular_and_irregular_components() False
- hyperelliptic_component()#
Returns the hyperelliptic component of self (or raise a ValueError).
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([2,2], k=2).hyperelliptic_component() Q_2(2^2)^hyp sage: Stratum([3,1], k=2).hyperelliptic_component() Traceback (most recent call last): ... ValueError: the stratum has no hyperelliptic component
- irregular_component()#
Returns the irregular component of that stratum or raise a ValueError.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([3,3,3,-1], k=2).irregular_component() Q_3(3^3, -1)^irr sage: Stratum([2,2], k=2).irregular_component() Traceback (most recent call last): ... ValueError: no irregular component for this stratum
- non_hyperelliptic_component()#
Returns the non hyperelliptic component of this stratum (or raise a ValueError).
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([10,10], k=2).non_hyperelliptic_component() Q_6(10^2)^nonhyp sage: Stratum([2,2], k=2).non_hyperelliptic_component() Traceback (most recent call last): ... ValueError: no non hyperelliptic component
- orientation_cover(fake_zeros=False)#
Return the stratum of Abelian differentials which contains the set of orientation cover of quadratic differentials in this stratum.
OPTIONS:
fake_zeros
- boolean - if True, add fake zeros which corresponds to the double cover of poles.
EXAMPLES:
sage: from surface_dynamics import * sage: q = Stratum({4:1,-1:4}, k=2) sage: q Q_1(4, -1^4) sage: a1 = q.orientation_cover(); a1 H_3(2^2) sage: q.orientation_cover(fake_zeros=True) H_3(2^2, 0^4)
For hyperelliptic strata (orientation cover of quadratic strata of the form Q(n,-1^{n+4})) the dimension coincide. From [Lan08] we know that it only happens for those ones:
sage: q = Stratum({4:1, -1:8}, k=2) sage: q Q_0(4, -1^8) sage: q.dimension() 7 sage: q.orientation_cover().dimension() 7 sage: q = Stratum({3:1, 1:1, -1:8}, k=2) sage: q Q_0(3, 1, -1^8) sage: q.dimension() 8 sage: a = q.orientation_cover(); a H_4(4, 2) sage: a.dimension() 9
TESTS:
sage: Stratum({-1:4}, k=2).orientation_cover() H_1(0)
- random_cylindric_permutation()#
Return a random cylindric permutation that belongs to this stratum.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = Stratum([4,4], k=2) sage: Q.random_cylindric_permutation() # random 0 1 2 3 4 5 1 5 2 6 3 6 4 0
- regular_component()#
Returns the regular component of that stratum or raise a ValueError.
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([12], k=2).regular_component() Q_4(12)^reg sage: Stratum([2,2,2,2], k=2).regular_component() Traceback (most recent call last): ... ValueError: no regular component for this stratum
- spin()#
Return the spin structure (None, 0 or 1) of that component.
Any quadratic differential has a canonic double cover (called the orientation cover) which is a surface, generally of higher genera, with an Abelian differential. The spin structure of the quadratic differential is the spin structure of that double cover.
The spin is None if any degree of zero of the quadratic differential is congruent to 2 mod 4. Otherwise, denoting respectively k1 and k3 the number of degree of zero congruent to 1 and 3 modulo 4 we have
..MATH:
spin = ((k1-k3)/4) mod 2
The proof of that formula is the object of [Lan04].
EXAMPLES:
sage: from surface_dynamics import * sage: Stratum([1,3], k=2).spin() 0 sage: Stratum({1:1,3:1,-1:4}, k=2).spin() 1 sage: Stratum([2,2], k=2).spin() is None True
- class surface_dynamics.flat_surfaces.quadratic_strata.QuadraticStratumComponent(stratum)#
Generic class for component of quadratic stratum.
- lyapunov_exponents_H_minus(**kargs)#
Compute the H^- Lyapunov exponents.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = Stratum({1:3, -1:3}, k=2).unique_component() sage: Q.lyapunov_exponents_H_minus(nb_iterations=2**21) # long time # abs tol .05 [1.000, 0.369, 0.176] sage: R = Stratum([3,3,3,-1], k=2).regular_component() sage: R.lyapunov_exponents_H_minus(nb_iterations=2**21) # long time # abs tol .05 [1.000, 0.328, 0.1899, 0.0820]
- lyapunov_exponents_H_plus(*args, **kargs)#
Compute the H^+ part of Lyapunov exponents spectrum.
All arguments and keywords are sent to ?
EXAMPLES:
sage: from surface_dynamics import * sage: R = Stratum([3,3,3,-1], k=2).regular_component() sage: R.lyapunov_exponents_H_plus(nb_iterations=2**21) # long time # abs tol .05 [0.596, 0.405, 0.202] sage: sum(_) # long time # abs tol .05 1.2 sage: R = Stratum([2,2,2,2], k=2).unique_component() sage: R.lyapunov_exponents_H_plus(nb_iterations=2**21) # long time # abs tol .05 [0.651, 0.469, 0.243] sage: sum(_) # long time # abs tol .05 1.3636
- one_cylinder_diagram()#
Return a separatrix diagram with one cylinder that belongs to this component of stratum.
EXAMPLES:
sage: from surface_dynamics import * sage: Q = Stratum({1:1,-1:5}, k=2) sage: c = Q.unique_component().one_cylinder_diagram() sage: c (0,0,1,1,2,2)-(3,3) sage: c.stratum() == Q True sage: Q = Stratum([5,-1], k=2) sage: c = Q.unique_component().one_cylinder_diagram() sage: c (0,1,1,2)-(3,0,3,2) sage: c.stratum() == Q True sage: Stratum({-1:4}, k=2).unique_component().one_cylinder_diagram() (0,0)-(1,1) sage: Stratum({-1:4,0:1}, k=2).unique_component().one_cylinder_diagram() (0,0)-(1,1,2,2)
- orientation_cover_component(fake_zeros=False)#
Return the connected component of Abelian stratum component which contains the set of orientation cover of quadratic differentials in this connected component.
ALGORITHM:
The spin only depends on the component and the only components for which the double cover belongs to a hyperelliptic component are Q(k,-1^k+4) and Q(2g-1,2g-1,-1,-1)^hyp
OPTIONS:
fake_zeros
- boolean - if True, add fake zeros which corresponds to the double cover of poles.
EXAMPLES:
sage: from surface_dynamics import * sage: cc = Stratum({5:1, -1:9}, k=2).unique_component() sage: cc.orientation_cover_component() H_4(6)^hyp sage: cc = Stratum({5:1, -1:5}, k=2).unique_component() sage: cc.orientation_cover_component() H_4(6)^odd sage: cc = Stratum({5:1, -1:1}, k=2).unique_component() sage: cc.orientation_cover_component() H_4(6)^even sage: cc = Stratum({1: 2, -1: 6}, k=2).unique_component() sage: cc.orientation_cover_component() H_3(2^2)^odd sage: cc = Stratum({4:1, -1:8}, k=2).unique_component() sage: cc.orientation_cover_component() H_3(2^2)^hyp sage: cc = Stratum({1:2, -1:2}, k=2).unique_component() sage: cc.orientation_cover_component() H_3(2^2)^hyp
- random_cylindric_permutation(nsteps=64)#
Return a cylindric permutation of the form
p = ((0,...),(..., 0))
where 0 can be any label.EXAMPLES:
sage: from surface_dynamics import * sage: Q = Stratum({4:1,-1:4}, k=2) sage: Q Q_1(4, -1^4) sage: c = Q.unique_component() sage: p = c.random_cylindric_permutation() sage: p.stratum_component() Q_1(4, -1^4)^c sage: Q = Stratum([6,6], k=2) sage: c_hyp, c_reg, c_irr = Q.components() sage: (c_hyp, c_reg, c_irr) (Q_4(6^2)^hyp, Q_4(6^2)^reg, Q_4(6^2)^irr) sage: all(c_hyp.random_cylindric_permutation().stratum_component() == c_hyp for _ in range(4)) True sage: all(c_reg.random_cylindric_permutation().stratum_component() == c_reg for _ in range(4)) True sage: all(c_irr.random_cylindric_permutation().stratum_component() == c_irr for _ in range(4)) True
- surface_dynamics.flat_surfaces.quadratic_strata.REQSC#
- class surface_dynamics.flat_surfaces.quadratic_strata.RegularExceptionalQuadraticStratumComponent(stratum)#
This class is intended to be called internally rather than directly. Call only with appropriate parameters, in particular correct genus: no consistency check inside, no prediction as to what may happen otherwise.
- permutation_representative(reduced=True, alphabet=None, relabel=True)#
Returns a generalized permutation representative.
EXAMPLES:
sage: from surface_dynamics import * sage: cc = Stratum([9,-1], k=2).regular_component() sage: p = cc.permutation_representative(); p 0 1 2 1 2 3 3 4 5 6 5 6 4 0 sage: p.stratum_component() Q_3(9, -1)^reg sage: cc = Stratum([6,3,-1], k=2).regular_component() sage: p = cc.permutation_representative(); p 0 1 2 3 1 2 4 4 5 6 7 6 7 3 5 0 sage: p.stratum_component() Q_3(6, 3, -1)^reg sage: cc = Stratum([12], k=2).regular_component() sage: p = cc.permutation_representative(); p 0 1 2 1 2 3 4 3 4 5 5 6 7 6 7 0 sage: p.stratum_component() Q_4(12)^reg