References

[AndBorChaDelGiacLewWhe]

J. E. Andersen, G. Borot, S. Charbonnier, V. Delecroix, A. Giacchetto, D. Lewanski and C. Wheeler “Topological recursion for Masur-Veech volumes” arXiv:1905.10352

[BasLop]

A. Linero Bas, G. Soler López Minimal non uniquely ergodic flipped IETs arXiv:2001.10989 [nlin.CD]

[BeyHed80]

T. Beyer, S. Mitchell “Constant time generation of rooted trees” SIAM J. Comput. 9, 706-712 (1980).

[Boi13]

C. Boissy “Labeled Rauzy classes and framed translation surfaces” Ann. Inst. Fourier 63, No. 2, 547-572 (2013); erratum ibid. 65, No. 2, 905-932 (2015).

[BoiLan09]

C. Boissy, E. Lanneau “Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials” Ergodic Theory Dyn. Syst. 29, No. 3, 767-816 (2009).

[CheMoeSauZag20]

D. Chen, M. Möller, A. Sauvaget, D. Zagier “Masur–Veech volumes and intersection theory on moduli spaces of Abelian differentials” Invent. Math. 222, No. 1, 283-373 (2020).

[DanNog90]

C. Danthony, A. Nogueira “Measured foliations on nonorientable surfaces” Ann. Sci. Éc. Norm. Supér. (4) 23, No. 3, 469-494 (1990).

[Del13]

V. Delecroix “Cardinality of Rauzy classes” Ann. Inst. Fourier 63, No. 5, 1651-1715 (2013).

[EskKonZor11]

A. Eskin, M. Kontsevich, A. Zorich “Lyapunov spectrum of square-tiled cyclic covers” J. Mod. Dyn. 5, No. 2, 319-353 (2011).

[EskMasZor03]

A. Eskin, H. Masur, A. Zorich “Moduli spaces of Abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants” Publ. Math., Inst. Hautes Étud. Sci. 97, 61-179 (2003).

[Jef19]

L. Jeffreys “Single-cylinder square-tiled surfaces and the ubiquity of ratio-optimising pseudo-Anosovs”, Preprint (2019), (https://arxiv.org/pdf/1906.02016.pdf)

[Joh80]

D. Johnson “Spin structures and quadratic forms on surfaces” J. Lond. Math. Soc., II. Ser. 22, 365-373 (1980).

[KonZor03]

M. Kontsevich, A. Zorich “Connected components of the moduli spaces of Abelian differentials with prescribed singularities” Invent. Math. 153, No. 3, 631-678 (2003).

[LanZvo04]

S. Lando, A. Zvonkine “Graphs on surfaces and their applications” Springer (2004).

[Lan04]

E. Lanneau “Parity of the spin structure defined by a quadratic differential” Geom. Topol. 8, 511-538 (2004).

[Lan08]

E. Lanneau “Connected components of the strata of the moduli spaces of quadratic differentials” Ann. Sci. Éc. Norm. Supér. (4) 41, No. 1, 1-56 (2008).

[MarMouYoc05]

S. Marmi, P. Moussa, J.-C. Yoccoz, “The cohomological equation for Roth-type interval exchange maps” J. Am. Math. Soc. 18, No. 4, 823-872 (2005).

[Nak02]

S.-i. Nakano “Efficient generation of plane trees” Inf. Process. Lett. 84, No. 3, 167-172 (2002).

[Nog89]

A. Nogueira “Almost all interval exchange transformations with flips are nonergodic” Ergodic Theory Dyn. Syst. 9, No. 3, 515-525 (1989).

[Rau80]

G. Rauzy “Echanges d’intervalles et transformations induites” Acta Arith. 34, no. 3, 203-212, (1980)

[RichOdlMcKWri86]

B. D. McKay, A. Odlyzko, B. Richmond, R. A. Wright “Constant time generation of free trees” SIAM J. Comput. 15, 540-548 (1986).

[Sau18]

A. Sauvaget “Volumes and Siegel-Veech constants of H(2g-2) and Hodge integrals” Geom. Funct. Anal. 28, No. 6, 1756-1779 (2018).

[Ser67]

J.-P. Serre “Représentations linéaires des groupes finis” Hermann & Cie. (1967).

[Vee78]

W. A. Veech “Interval exchange transformations” J. Anal. Math. 33, 222-272 (1978).

[Vee1982]

W. Veech “Gauss measures for transformations on the space of interval exchange maps” Ann. of Math., vol. 115, no. 2 (1982), pp. 201-242.

[Yoc06]

J.-C. Yoccoz “Continued fraction algorithms for interval exchange maps: an introduction” in “Frontiers in number theory, physics, and geometry I.” Springer 401-435 (2006).

[Zor08]

A. Zorich “Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials”, Journal of Modern Dynamics, vol. 2, no 1, 139-185 (2008)

[ZS]

Anton Zorich, “Generalized Permutation software” (Mathematica scripts)