origami#

Origami

An origami is:

  • a couple of permutations

  • a covering of the torus ramified over one point

  • gluing of squares

  • Abelian differential on Riemann surface with rational periods

EXAMPLES:

sage: from surface_dynamics import *

sage: E = origamis.EierlegendeWollmilchsau()
sage: E.r()
(1,2,3,4)(5,6,7,8)
sage: E.u()
(1,5,3,7)(2,8,4,6)
sage: E.stratum_component()
H_3(1^4)^c
sage: E.lyapunov_exponents_approx()   # abs tol 1e-3
[0.0000485630931783940, 0.0000452662733371477]

sage: o = Origami('(1,2,3,4,5,6)','(1,7)')
sage: V = o.veech_group()
sage: V
Arithmetic subgroup of index 54
sage: G = V.coset_graph()
sage: G.diameter()
16
class surface_dynamics.flat_surfaces.origamis.origami.ActionOnOrigamiObjects(objects)#

Generic action of the automorphism group of an origami.

surface_dynamics.flat_surfaces.origamis.origami.Origami(r, u, sparse=False, check=True, as_tuple=False, positions=None, name=None)#

Constructor for origami

INPUT:

  • r, u - two permutations

  • sparse - boolean (default: False)

  • check - boolean (default: True) - whether or not check the input

  • as_tuple - boolean (default: False) - if True, assume that r and u are tuples on [0,…,N-1] (time efficient)

  • positions - list of 2-tuples (default: None) - position of the squares for drawings

  • name - an optional name to the origami

TESTS:

sage: from surface_dynamics import Origami
sage: Origami('(0)(1,3)(2)', '(0,3,2,1)', as_tuple=True)
(1)(2,4)(3)
(1,4,3,2)
sage: Origami('(0)(1,3)(2)', '(0,3,2,1)', as_tuple=True)
(1)(2,4)(3)
(1,4,3,2)
sage: Origami((0,3,2,1), [3,0,1,2], as_tuple=True)
(1)(2,4)(3)
(1,4,3,2)
sage: Origami([0,3,2,1], "(0,3,2,1)", as_tuple=True)
(1)(2,4)(3)
(1,4,3,2)
class surface_dynamics.flat_surfaces.origamis.origami.OrigamiChainComplex(origami)#

Chain complex for reduced homology of the origami

border_space(degree)#

Returns the space of borders of degree i

Bi = im(der: C_{i+1} -> Ci)

chain_space(degree)#

Chain space.

INPUT:

  • degree – either

cycle_space(degree)#

Returns the space of cycles of degree i

Zi = ker(der: C_i -> C_{i-1})

origami()#

Return the underlying origami.

class surface_dynamics.flat_surfaces.origamis.origami.OrigamiEdges(origami)#
basis_of_simple_closed_curves()#
cardinality()#
derivative()#
end(i)#
intersection(c1, c2)#

Returns the intersection of c1 and c2 assuming that they are simple closed curves

is_simple_closed_curve(c)#

Test if c is a simple closed curve

origami()#
simple_closed_curve_to_vertex_in_out(c)#

From a curve c (as a vector) returns two dictionaries associated to input/output view from each visited vertices

start(i)#
winding(c)#

Return the winding of the curve c

class surface_dynamics.flat_surfaces.origamis.origami.OrigamiFaces(origami)#
cardinality()#
derivative()#
class surface_dynamics.flat_surfaces.origamis.origami.OrigamiObjects#
border_space()#

The border space.

chain_space()#
cycle_space()#

The space of cycles.

class surface_dynamics.flat_surfaces.origamis.origami.OrigamiVertex(parent, ur, dl)#
adjacent_edge_indices()#

Returns a 2-tuple (incoming,outgoing)

degree()#
down_left_tuple()#
edge_positions()#

The position of the edges.

incoming_edge_indices()#
incoming_edge_position(i)#
index()#
outgoing_edge_indices()#
outgoing_edge_positions(i)#
up_right_tuple()#
class surface_dynamics.flat_surfaces.origamis.origami.OrigamiVertices(origami, register_automorphism_action=False)#

The set of vertices of an origami.

It is in bijection with the biclasses H G C where H is the stabilizer of 1 and C is the subgroup generated by the commutator r u r**-1 u **-1.

cardinality()#

The number of vertices.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)','(1,5)')
sage: V = o._vertices()
sage: V.cardinality()
3
chain_space()#

Return the space of chain on this finite set of vertices.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: V.chain_space()
Vector space of dimension 3 over Rational Field
derivative()#

Return the derivative matrix.

That is a matrix from the chain space to QQ.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: V.derivative()
[1 1 1]
down_left_vertex(i)#

Return the vertex that is in the down left corner of the i-th square.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: V.down_left_vertex(2)
vertex (1, 5, 4)
origami()#

Return the underlying origami.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)','(1,5)')
sage: V = o._vertices()
sage: V.origami()
(1,2,3,4)(5)
(1,5)(2)(3)(4)
sage: V.origami() is o
True
up_right_vertex(i)#

Return the vertex that is in the up right corner of the i-th square.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: V.up_right_vertex(2)
vertex (2,)
vertex(i)#

Return the vertex that is in the up right corner of the i-th square.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: V.up_right_vertex(2)
vertex (2,)
vertex_index(v)#

Return the index of the vertex v.

EXAMPLES:

sage: from surface_dynamics import *

sage: o = Origami('(1,2,3,4)', '(1,5)')
sage: V = o._vertices()
sage: v0 = V.up_right_vertex(2)
sage: v0
vertex (2,)
sage: V.vertex_index(v0)
1
sage: V[1] == v0
True

sage: v1 = V.up_right_vertex(5)
sage: v1
vertex (1, 5, 4)
sage: V.vertex_index(v1)
0
sage: V[0] == v1
True
surface_dynamics.flat_surfaces.origamis.origami.flatten_word(w)#

EXAMPLES:

sage: from surface_dynamics.flat_surfaces.origamis.origami import flatten_word
sage: flatten_word([('l', 4), ('r', 6)])
'llllrrrrrr'
surface_dynamics.flat_surfaces.origamis.origami.permutation_simplicial_action(r, u, n, w)#

From a word in ‘l’,’r’ return the simplicial action on homology as well as the obtained origami.

INPUT:

  • r and u - permutations

  • n - the degree of the permutations

  • w - a string in ‘l’ and ‘r’ or a list of 2-tuples which are made of the letter ‘l’ or ‘r’ and a positive integer