masur_veech
#
Topological recursion for Masur-Veech volumes.
This is the topological recursion as developed in [AndBorChaDelGiacLewWhe].
EXAMPLES:
Masur-Veech volumes (without the pi power):
sage: from surface_dynamics import MasurVeechTR
sage: MV = MasurVeechTR()
sage: for g,n in [(0,4),(0,5),(1,1),(1,2),(1,3),(2,1),(2,2)]:
....: coeff = 2**(4*g-2+n) * (4*g-4+n).factorial() / (6*g-7+2*n).factorial()
....: v = coeff * MV.F(g, n, (0,)*n)
....: print(g, n, v)
0 4 2
0 5 1
1 1 2/3
1 2 1/3
1 3 11/60
2 1 29/840
2 2 337/18144
- class surface_dynamics.topological_recursion.masur_veech.MasurVeechTR(edge_weight=1, vertex_weight=1, cache_all=True)#
Topological recursion for Masur-Veech volumes (Anderssen et al.)
EXAMPLES:
Below is the distribution of cylinders in genus zero and n equal 4, 5, 6, 7:
sage: from surface_dynamics.topological_recursion import MasurVeechTR sage: MV = MasurVeechTR(polygen(QQ, 't')) sage: for n in range(4, 8): ....: p = MV.F(0, n, (0,)*n) ....: print(p / p(1)) t 5/9*t^2 + 4/9*t 7/27*t^3 + 4/9*t^2 + 8/27*t 1/9*t^4 + 8/27*t^3 + 256/675*t^2 + 16/75*t
- A(i, j, k)#
- B(g, n, i, j)#
- C(i, jmax, kmax, smax)#
Iterate through the non-zero
(j, k, C(i, j, k))
given thei
.INPUT:
jmax
- max value forj
kmax
- max value fork
smax
- max value forj+k
TESTS:
sage: from surface_dynamics.topological_recursion import MasurVeechTR sage: MV = MasurVeechTR() sage: for i in range(5): ....: for s in range(10): ....: for j,k,_ in MV.C(0, 5, 5, s): ....: assert j+k <= s
- D(i)#