iscc#

Initialize self. See help(type(self)) for accurate signature.

surface_dynamics.misc.iscc.higher_order_terms(p)#
surface_dynamics.misc.iscc.iscc_card(arg)#

EXAMPLES:

sage: from surface_dynamics import *
sage: from surface_dynamics.misc.iscc import iscc_card
sage: cd = CylinderDiagram('(0,1)-(0,2) (2)-(1)')
sage: iscc_card(cd)  # optional: barvinok
'[w0, w1] -> { 1 : 0 <= w1 <= w0 }'

sage: r = RibbonGraph(faces='(0,2,4,6,7)(8,9,5,3,1)', edges='(0,1)(2,3)(4,5)(6,7)(8,9)')
sage: iscc_card(r)   # optional: barvinok
'[b0, b1] -> { (((1 - 1/8 * b0) + 17/12 * b1 + 5/8 * b1^2 + 1/12 * b1^3) + 1/4 * floor((2b0)/4)) : (b0 + b1) mod 2 = 0 and 0 <= b1 <= -2 + b0; ((1 + 31/24 * b0 + 5/8 * b0^2 + 1/12 * b0^3) + 1/4 * floor((2b0)/4)) : (b0 + b1) mod 2 = 0 and b0 >= 0 and b1 >= b0 }'
surface_dynamics.misc.iscc.iscc_cd_string(cd)#

Given a cylinder diagram produces a parametrized polytopes (by the widths of cylinders)

EXAMPLES:

sage: from surface_dynamics.misc.iscc import iscc_cd_string
sage: from surface_dynamics import CylinderDiagram
sage: cd = CylinderDiagram('(0,1)-(0,2) (2)-(1)')
sage: iscc_cd_string(cd)
'[w0, w1] -> { [l0, l1, l2] : l0 >= 0 and l1 >= 0 and l2 >= 0 and w0 = l0 + l1 = l0 + l2 and w1 = l2 = l1 }'
surface_dynamics.misc.iscc.iscc_rg_string(r)#

EXAMPLES:

sage: from surface_dynamics import *
sage: from surface_dynamics.misc.iscc import iscc_rg_string
sage: r = RibbonGraph(faces='(0,2,4,6,7)(8,9,5,3,1)', edges='(0,1)(2,3)(4,5)(6,7)(8,9)')
sage: iscc_rg_string(r)
'[b0, b1] -> { [l0, l1, l2, l3, l4, l5, l6, l7, l8, l9] : l0 >= 0 and l1 >= 0 and l2 >= 0 and l3 >= 0 and l4 >= 0 and l5 >= 0 and l6 >= 0 and l7 >= 0 and l8 >= 0 and l9 >= 0 and l0 = l1 and l2 = l3 and l4 = l5 and l6 = l7 and l8 = l9 and b0 = l0 + l2 + l4 + l6 + l7 and b1 = l1 + l8 + l9 + l5 + l3 }'
surface_dynamics.misc.iscc.parse_iscc_result(ans, d)#