teichmueller_curve
#
Teichmueller curves of Origamis.
- class surface_dynamics.flat_surfaces.origamis.teichmueller_curve.Cusp(parent, origami, slope)#
A cusp in a Teichmueller curve.
width of the cusp
cylinder decomposition
lengths
heights
a representative
- cylinder_diagram(data=False)#
Return the cylinder diagram associated to this cusp.
- slope()#
Return one slope
- width()#
Return the width of the cusp
- class surface_dynamics.flat_surfaces.origamis.teichmueller_curve.TeichmuellerCurve#
- surface_dynamics.flat_surfaces.origamis.teichmueller_curve.TeichmuellerCurveOfOrigami(origami)#
Return the teichmueller curve for an origami
TESTS:
sage: from surface_dynamics import * sage: o = Origami('(1,2)','(1,3)') sage: o.teichmueller_curve() #indirect test Teichmueller curve of the origami (1)(2,3) (1,2)(3)
- class surface_dynamics.flat_surfaces.origamis.teichmueller_curve.TeichmuellerCurveOfOrigami_class(mapping, inv_mapping, l_edges, r_edges, s2_edges, s3_edges)#
- an_element()#
Returns an origami in this Teichmueller curve.
Beware that the labels of the initial origami may have changed.
EXAMPLES:
sage: from surface_dynamics import * sage: o = Origami('(1,2)','(1,3)') sage: t = o.teichmueller_curve() sage: t.origami() (1)(2,3) (1,2)(3)
- cusp_representative_iterator()#
Iterator over the cusp of self.
Each term is a couple
(o,w)
whereo
is a representative of the cusp (an origami) andw
is the width of the cusp (an integer).
- cusp_representatives()#
- orbit_graph(s2_edges=True, s3_edges=True, l_edges=False, r_edges=False, vertex_labels=True)#
Return the graph of action of PSL on this origami
INPUT:
return_map
- return the list of origamis in the orbit
- origami()#
Returns an origami in this Teichmueller curve.
Beware that the labels of the initial origami may have changed.
EXAMPLES:
sage: from surface_dynamics import * sage: o = Origami('(1,2)','(1,3)') sage: t = o.teichmueller_curve() sage: t.origami() (1)(2,3) (1,2)(3)
- plot_graph()#
Plot the graph of the veech group.
The graph corresponds to the action of the generators on the cosets determined by the Veech group in PSL(2,ZZ).
- simplicial_action_generators()#
Return action of generators of the Veech group on homology
- stratum()#
Returns the stratum of the Teichmueller curve
EXAMPLES:
sage: from surface_dynamics import * sage: o = Origami('(1,2)','(1,3)') sage: t = o.teichmueller_curve() sage: t.stratum() H_2(2)
- sum_of_lyapunov_exponents()#
Returns the sum of Lyapunov exponents for this origami
EXAMPLES:
sage: from surface_dynamics import *
Let us consider few examples in H(2) for which the sum is independent of the origami:
sage: o = Origami('(1,2)','(1,3)') sage: o.stratum() H_2(2) sage: o.sum_of_lyapunov_exponents() 4/3 sage: o = Origami('(1,2,3)(4,5,6)','(1,5,7)(2,6)(3,4)') sage: o.stratum() H_2(2) sage: o.sum_of_lyapunov_exponents() 4/3
This is true as well for the stratum H(1,1):
sage: o = Origami('(1,2)','(1,3)(2,4)') sage: o.stratum() H_2(1^2) sage: o.sum_of_lyapunov_exponents() 3/2 sage: o = Origami('(1,2,3,4,5,6,7)','(2,6)(3,7)') sage: o.stratum() H_2(1^2) sage: o.sum_of_lyapunov_exponents() 3/2
ALGORITHM:
Kontsevich-Zorich formula
- veech_group()#
Return the veech group of the Teichmueller curve
- surface_dynamics.flat_surfaces.origamis.teichmueller_curve.TeichmuellerCurvesOfOrigamis(origamis, assume_normal_form=False, limit=0, verbose_level=0)#
Return a set of Teichmueller curve from a set of origamis
INPUT:
origamis
- iterable of origamisassume_normal_form
- whether or not assume that each origami is in normal formlimit
- integer (default: 0) - if positive, then stop the computation if the size of an orbit is bigger thanlimit
.