marked_partition
#
Marked partition
The suspensions of interval exchanges have a natural geometric structure which is a translation surface. The singularities of the interval exchanges yield singularities on the surface which gives an integer partition. As the left and the right of the interval plays a special role, we consider partitions with marking. Either the points at the left and the right of the interval coincide in which case the marking is of type one, otherwise they are two different parts and the marking is of type two.
- class surface_dynamics.interval_exchanges.marked_partition.MarkedPartition(*args, **kwds)#
Marked partition
A marked partition is an integer partition
p
with the additional data of either a couple(m,a)
wherem
is an element ofp
anda
is an integer lesser thanp
or a couple(m_l,m_r)
wherem_l
andm_r
are distinct element ofp
. In the first case the type is1
while in the second the type is2
.EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: m1 = MarkedPartition([3,2,1],1,(2,0)); m1 2|0 [3, 2, 1] sage: m2 = MarkedPartition([3,2,1],2,(2,3)); m2 2o3 [3, 2, 1]
It also possible to initialize it from a string:
sage: MarkedPartition('2|1 [3,2,2]') 2|1 [3, 2, 2]
TESTS:
sage: MarkedPartition(m1) 2|0 [3, 2, 1] sage: MarkedPartition(str(m1)) 2|0 [3, 2, 1] sage: MarkedPartition(m2) 2o3 [3, 2, 1] sage: MarkedPartition(str(m2)) 2o3 [3, 2, 1]
- is_odd()#
Return
True
if all terms of p are odd.EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: MarkedPartition([3,1,1],1,(3,1)).is_odd() True sage: MarkedPartition([3,2,2],1,(3,1)).is_odd() False
- left()#
Return the part that is marked on the left.
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: MarkedPartition([3,2,1],1,(2,0)).left() 2 sage: MarkedPartition([3,2,1],2,(1,3)).left() 1
- marking()#
Return a 3-tuple
(type,d0,d1)
wheretype
is the type of the marking and(d0,d1)
corresponds to the data associated to the marking.EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: MarkedPartition([3,2,1],1,(2,0)).marking() 2|0
- partition()#
Return the underlying partition.
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: MarkedPartition([1,3,2],1,(2,0)).partition() [3, 2, 1] sage: MarkedPartition([2,3,1],2,(1,3)).partition() [3, 2, 1]
- right()#
Return the part that is marked on the right.
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import MarkedPartition sage: MarkedPartition([3,2,1],1,(2,0)).right() 2 sage: MarkedPartition([3,2,1],2,(1,3)).right() 3
- class surface_dynamics.interval_exchanges.marked_partition.Marking(*args)#
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import Marking sage: Marking('2o3') 2o3 sage: Marking('3|0') 3|0 sage: Marking(1,(2,0)) 2|0 sage: Marking(2,(2,1)) 2o1
- left()#
Return the part that is marked on the left.
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import Marking sage: Marking(1,(2,0)).left() 2 sage: Marking(2,(1,3)).left() 1
- right()#
Return the part that is marked on the right.
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import Marking sage: Marking(1,(2,0)).right() 2 sage: Marking(2,(1,3)).right() 3
- surface_dynamics.interval_exchanges.marked_partition.markings(p)#
Return all possible markings attached to a given partition.
INPUT:
p
- a list of non-negative integers
EXAMPLES:
sage: from surface_dynamics.interval_exchanges.marked_partition import markings sage: list(markings([2,1])) [2|0, 2|1, 2|2, 1|0, 1|1, 2o1, 1o2] sage: list(markings([2,2,1])) [2|0, 2|1, 2|2, 1|0, 1|1, 2o2, 2o1, 1o2] sage: list(markings([2,2,1,1])) [2|0, 2|1, 2|2, 1|0, 1|1, 2o2, 2o1, 1o2, 1o1]