Source code for flatsurf.geometry.veech_group

r"""
The Veech group of a surface and related concepts.

EXAMPLES:

We write an element of the Veech group as an action on homology::

    sage: from flatsurf import translation_surfaces
    sage: S = translation_surfaces.square_torus()
    sage: A = S.affine_automorphism_group()
    sage: M = matrix([[1, 2], [0, 1]])
    sage: f = A.derivative().section()(M, check=False)

    sage: from flatsurf import SimplicialHomology
    sage: H = SimplicialHomology(S)
    sage: H.hom(f)
    Induced endomorphism of H₁(Translation Surface in H_1(0) built from a square)
      Defn: Induced by Affine endomorphism of Translation Surface in H_1(0) built from a square
              Defn: Lift of linear action given by
                    [1 2]
                    [0 1]

"""

######################################################################
#  This file is part of sage-flatsurf.
#
#        Copyright (C) 2024 Julian Rüth
#
#  sage-flatsurf is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 2 of the License, or
#  (at your option) any later version.
#
#  sage-flatsurf is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
######################################################################

from sage.groups.matrix_gps.matrix_group import MatrixGroup_generic
from sage.categories.morphism import Morphism
from sage.misc.cachefunc import cached_method

from flatsurf.geometry.morphism import (
    SurfaceMorphism,
    SurfaceMorphism_factorization,
    MorphismSpace,
)


[docs] class VeechGroup_generic(MatrixGroup_generic): r""" A generic (currently essentially empty) implementation of the Veech group. You should not create such a group directly. Use :func:`VeechGroup` or :meth:`flatsurf.geometry.categories.dilation_surfaces.DilationSurfaces.ParentMethods.veech_group`. .. NOTE: See https://github.com/flatsurf/sage-flatsurf/issues/157 for a related issue to actually add some functionality to this object. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() TESTS:: sage: from flatsurf.geometry.veech_group import VeechGroup_generic sage: isinstance(V, VeechGroup_generic) True sage: TestSuite(V).run() """
[docs] def __init__(self, surface, category=None): self._surface = surface from sage.all import ZZ super().__init__(ZZ(2), surface.base_ring(), category=category)
[docs] def surface(self): r""" The surface for which this is the Veech group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: S.veech_group().surface() is S True """ return self._surface
def _repr_(self): r""" Return a printable representation of this group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() sage: V VeechGroup(Translation Surface in H_1(0) built from a square) """ return f"VeechGroup({self._surface!r})" def _element_constructor_(self, x, check=True): r""" Create an element of the Veech group from ``x``. INPUT: - ``x`` -- a 2×2 matrix EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() sage: V(matrix([[1, 0], [0, 1]])) [1 0] [0 1] """ from sage.all import GL x = GL(2, self.base_ring())(x) x = super()._element_constructor_(x) if check: if x not in self: raise ValueError("this is not an element of the Veech group") return x def _an_element_(self): r""" Return an element of the Veech group (for testing.) EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() sage: V.an_element() [1 0] [0 1] """ from sage.all import identity_matrix return self(identity_matrix(2))
[docs] def gens(self): r""" Return generators of this group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() sage: V.gens() Traceback (most recent call last): ... NotImplementedError: cannot compute generators of the Veech group yet """ raise NotImplementedError("cannot compute generators of the Veech group yet")
[docs] def __contains__(self, x): r""" Return whether ``x`` is contained in the Veech group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: V = S.veech_group() sage: m = matrix([[1, 0], [0, 1]]) sage: m in V True """ # Unfortunately, MatrixGroup_generic (and therefore GL) does not # implement _richcmp_ nicely. Therefore, we cannot rely on the builtin # implementation of __contains__, i.e., the problem is that # GL(2, QQ)(M) != M from sage.all import GL x = GL(2, self.base_ring())(x) if x.is_one(): return True raise NotImplementedError( "cannot decide whether a matrix is in the Veech group yet" )
[docs] def __eq__(self, other): r""" Return whether this group is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: S.veech_group() == S.veech_group() True """ if not isinstance(other, VeechGroup_generic): return False return self._surface == other._surface
[docs] def __hash__(self): r""" Return a hash value for this group that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: hash(S.veech_group()) == hash(S.veech_group()) True """ return hash(self._surface)
[docs] class AffineAutomorphismGroup_generic(MorphismSpace): r""" A generic implementation of the group of affine automorphisms of a surface. You should not create such a group directly. Use :func:`AffineAutomorphismGroup` or :meth:`flatsurf.geometry.categories.dilation_surfaces.DilationSurfaces.ParentMethods.affine_automorphism_group`. .. NOTE:: Currently, this group is mostly empty and just a container to hold on to the :meth:`derivative` method. We do not provide a ``category`` parameter here because it makes serialization overly complicated. (And we do not think that anybody is going to use it.) EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() TESTS:: sage: from flatsurf.geometry.veech_group import AffineAutomorphismGroup_generic sage: isinstance(A, AffineAutomorphismGroup_generic) True sage: import cppyy # optional: pyflatsurf # random output due to cppyy deprecation warnings sage: TestSuite(A).run() # optional: pyflatsurf """
[docs] def __init__(self, surface): self._surface = surface super().__init__(surface, surface, base=surface.base_ring())
[docs] def surface(self): r""" The surface for which this is the affine automorphism group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: S.affine_automorphism_group().surface() is S True """ return self._surface
def _an_element_(self): r""" Return a morphism in this group (for testing.) EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: S.affine_automorphism_group().an_element() Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 0] [0 1] """ from sage.all import identity_matrix return self.derivative().section()(identity_matrix(2))
[docs] def __repr__(self): r""" Return a printable repreentation of this group. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A AffineAutomorphismGroup(Translation Surface in H_1(0) built from a square) """ return f"AffineAutomorphismGroup({self.domain()!r})"
[docs] def derivative(self): r""" Return the derivative of this group, i.e., the map to `GL_2(\mathbb{R})` whose image is the :func:`VeechGroup`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative() Derivative morphism: From: AffineAutomorphismGroup(Translation Surface in H_1(0) built from a square) To: General Linear Group of degree 2 over Rational Field """ from sage.all import GL, Hom codomain = GL(2, self.base_ring()) parent = Hom(self, codomain) return parent.__make_element_class__(DerivativeMap)(self, codomain)
def _from_matrix(self, matrix): r""" Return an affine automorphism whose :meth:`derivative` is ``matrix``. This is a helper method for :meth:`SectionDerivativeMap._call_`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative().section()(matrix([[1, 0], [0, 1]]), check=False) Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 0] [0 1] """ return self.__make_element_class__(AffineAutomorphism_matrix)(self, matrix) def _test_one(self, **options): # Disabled, because we have no proper identity morphism yet pass def _test_prod(self, **options): # Disabled, because we have no proper identity morphism yet pass
[docs] def __reduce__(self): r""" Return a serializable representation of this space. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: loads(dumps(A)) == A True """ return AffineAutomorphismGroup, (self._surface,)
[docs] class AffineAutomorphism_matrix(SurfaceMorphism_factorization): r""" An affine automorphism of a surface that is an (arbitrary) lift of an element of `GL_2(\mathbb{R})`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: f = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: f Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 3] [0 1] TESTS:: sage: from flatsurf.geometry.veech_group import AffineAutomorphism_matrix sage: isinstance(f, AffineAutomorphism_matrix) True sage: TestSuite(f).run() # optional: pyflatsurf """
[docs] def __init__(self, parent, matrix): super().__init__(parent) if matrix.parent().base_ring() is not parent.base_ring(): raise TypeError("matrix must be over the surface base ring") if matrix.is_mutable(): raise TypeError("matrix must be immutable") self._matrix = matrix
def _repr_type(self): r""" Helper method for :meth:`_repr_`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 3] [0 1] """ return "Affine" def _repr_defn(self): r""" Helper method for :meth:`_repr_`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 3] [0 1] """ return f"Lift of linear action given by\n{self._matrix!r}" @cached_method def _factorization(self): r""" Implements :meth:`SurfaceMorphism_factorization._factorization`, the actual morphism that does all the heavy lifting for us. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: f = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: f._factorization() # optional: pyflatsurf Composite endomorphism of Translation Surface in H_1(0) built from a square Defn: Linear morphism: From: Translation Surface in H_1(0) built from a square To: Translation Surface in H_1(0) built from a quadrilateral Defn: [1 3] [0 1] then Delaunay decomposition morphism: From: Translation Surface in H_1(0) built from a quadrilateral To: Delaunay cell decomposition of Translation Surface in H_1(0) built from a square then Section morphism: From: Delaunay cell decomposition of Translation Surface in H_1(0) built from a square To: Translation Surface in H_1(0) built from a square Defn: Section of Delaunay decomposition morphism: From: Translation Surface in H_1(0) built from a square To: Delaunay cell decomposition of Translation Surface in H_1(0) built from a square """ deformation = self.domain().apply_matrix(self._matrix, in_place=False) codomain_normalization = self.codomain().delaunay_decompose() normalization = deformation.codomain().delaunay_decompose( codomain=codomain_normalization.codomain() ) return codomain_normalization.section() * normalization * deformation def _test_section_point(self, **options): # Disabled, because pyflatsurf backed surfaces cannot have points yet pass
[docs] def __eq__(self, other): r""" Return whether this morphism is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: f = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: g = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: f == g True """ if not isinstance(other, AffineAutomorphism_matrix): return False return self.parent() == other.parent() and self._matrix == other._matrix
[docs] def __hash__(self): r""" Return a hash value for this automorphism that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: f = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: g = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: hash(f) == hash(g) True """ return hash((self.parent(), self._matrix))
[docs] def __reduce__(self): r""" Return a serializable representation of this automorphism. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: f = A.derivative().section()(matrix([[1, 3], [0, 1]]), check=False) sage: loads(dumps(f)) == f True """ return AffineAutomorphism_matrix, (self.parent(), self._matrix)
[docs] class DerivativeMap(Morphism): r""" The derivative from the :class:`AffineAutomorphismGroup` to `GL_2(\mathbb{R})`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: d = A.derivative() TESTS:: sage: from flatsurf.geometry.veech_group import DerivativeMap sage: isinstance(d, DerivativeMap) True sage: TestSuite(d).run() """
[docs] def section(self): r""" Return a section of this map, i.e., a map that lifts a matrix in `GL_2(\mathbb{R})` to an affine automorphism. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: d = A.derivative() sage: s = d.section() """ return ( self.parent().reversed().__make_element_class__(SectionDerivativeMap)(self) )
def _repr_type(self): r""" Helper for :meth:`_repr_`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative() Derivative morphism: From: ... To: ... """ return "Derivative"
[docs] def __eq__(self, other): r""" Return whether this derivative is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative() == A.derivative() True """ if not isinstance(other, DerivativeMap): return False return self.parent() == other.parent()
[docs] def __hash__(self): r""" Return a hash value for this derivative that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: hash(A.derivative()) == hash(A.derivative()) True """ return hash(self.parent())
[docs] class SectionDerivativeMap(Morphism): r""" A section of a :class:`DerivativeMap`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: d = A.derivative() sage: s = d.section() TESTS:: sage: from flatsurf.geometry.veech_group import SectionDerivativeMap sage: isinstance(s, SectionDerivativeMap) True sage: TestSuite(s).run() """
[docs] def __init__(self, derivative): super().__init__(derivative.parent().reversed()) self._derivative = derivative
[docs] def section(self): r""" Return a section of this section, i.e., the original map. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: d = A.derivative() sage: s = d.section() sage: s.section() is d True """ return self._derivative
def _repr_type(self): r""" Helper for :meth:`_repr_`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: d = A.derivative() sage: s = d.section() sage: s Section morphism: From: General Linear Group of degree 2 over Rational Field To: AffineAutomorphismGroup(Translation Surface in H_1(0) built from a square) """ return "Section" def _call_(self, matrix): r""" Return an affine automorphism whose derivative is ``matrix``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: s = A.derivative().section() Currently, we cannot check whether an element is in the :class:`VeechGroup` so this fails:: sage: s(matrix([[1, 2], [0, 1]])) Traceback (most recent call last): ... NotImplementedError: cannot decide whether a matrix is in the Veech group yet We need to pass ``check=False`` to ignore this check:: sage: s(matrix([[1, 2], [0, 1]]), check=False) Affine endomorphism of Translation Surface in H_1(0) built from a square Defn: Lift of linear action given by [1 2] [0 1] """ return self(matrix, check=True) def _call_with_args(self, matrix, args, kwargs): r""" Helper method for :meth:`_call_` to accept a ``check`` keyword. """ if args: raise ValueError("unsupported positional argument") check = kwargs.pop("check", True) if kwargs: raise ValueError("unsupported keyword argument") if check: if matrix not in VeechGroup(self.codomain().surface()): raise ValueError("matrix must be in the Veech group") return self.codomain()._from_matrix(matrix.matrix())
[docs] def __eq__(self, other): r""" Return whether this section is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: A.derivative().section() == A.derivative().section() True """ if not isinstance(other, SectionDerivativeMap): return False return self._derivative == other._derivative
[docs] def __hash__(self): r""" Return a hash value for this section that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: hash(A.derivative().section()) == hash(A.derivative().section()) True """ return hash(self._derivative)
[docs] def AffineAutomorphismGroup(surface): r""" Return the group of affine automorphisms of this surface, i.e., the group of homeomorphisms that can be locally expressed as affine transformations. EXAMPLES:: sage: from flatsurf import dilation_surfaces, AffineAutomorphismGroup sage: S = dilation_surfaces.genus_two_square(1/2, 1/3, 1/4, 1/5) sage: AffineAutomorphismGroup(S) AffineAutomorphismGroup(Genus 2 Positive Dilation Surface built from 2 right triangles and a hexagon) .. SEEALSO:: :meth:`flatsurf.geometry.categories.dilation_surfaces.DilationSurfaces.ParentMethods.affine_automorphism_group` """ return surface.affine_automorphism_group()
[docs] def VeechGroup(surface): r""" Return the Veech group of ``surface``, i.e., the group of matrices that fix its vertices. EXAMPLES:: sage: from flatsurf import dilation_surfaces, VeechGroup sage: S = dilation_surfaces.genus_two_square(1/2, 1/3, 1/4, 1/5) sage: VeechGroup(S) VeechGroup(Genus 2 Positive Dilation Surface built from 2 right triangles and a hexagon) .. SEEALSO:: :meth:`flatsurf.geometry.categories.dilation_surfaces.DilationSurfaces.ParentMethods.veech_group` """ return surface.veech_group()