The GL(2,R) Action, the Veech Group, Delaunay Decomposition

The GL(2,R) Action, the Veech Group, Delaunay Decomposition#

Acting on surfaces by matrices.#

from flatsurf import translation_surfaces

s = translation_surfaces.veech_double_n_gon(5)
s.plot()
../_images/cac7b694f6cfa24444f865033d0c6192e91e23165df0934c302c9fc080b22108.png
m = matrix([[2, 1], [1, 1]])

You can act on surfaces with the \(GL(2,R)\) action

ss = m * s
ss
Translation Surface in H_2(2) built from 2 pentagons
ss.plot()
../_images/cdea1bab8ecdf88e075502dbba8bc82c13e87f5b3ef8e29e0721f9ca08d0d30a.png

To “renormalize” you can improve the presentation using the Delaunay decomposition.

sss = ss.delaunay_decomposition()
sss
/home/runner/work/sage-flatsurf/sage-flatsurf/flatsurf/geometry/categories/similarity_surfaces.py:2891: UserWarning: delaunay_decomposition() has been deprecated and will be removed in a future version of sage-flatsurf; use delaunay_decompose().codomain() instead
  warnings.warn(
Delaunay cell decomposition of Translation Surface in H_2(2) built from 2 pentagons
sss.plot()
../_images/8f7b682dba17f105e5e3f2bf555135173350d6108d02e6bde55526065ab9a252.png

The Veech group#

Set \(s\) to be the double pentagon again.

s = translation_surfaces.veech_double_n_gon(5)

The surface has a horizontal cylinder decomposition all of whose moduli are given as below

p = s.polygon(0)
modulus = (p.vertex(3)[1] - p.vertex(2)[1]) / (p.vertex(2)[0] - p.vertex(4)[0])
AA(modulus)
0.3632712640026804?
m = matrix(s.base_ring(), [[1, 1 / modulus], [0, 1]])
show(m)
\(\displaystyle \left(\begin{array}{rr} 1 & \frac{2}{5} a^{3} \\ 0 & 1 \end{array}\right)\)
show(matrix(AA, m))
\(\displaystyle \left(\begin{array}{rr} 1 & 2.752763840942347? \\ 0 & 1 \end{array}\right)\)

The following can be used to check that \(m\) is in the Veech group of \(s\).

s.canonicalize() == (m * s).canonicalize()
True

Infinite surfaces#

Infinite surfaces support multiplication by matrices and computing the Delaunay decomposition. (Computation is done “lazily”)

s = translation_surfaces.chamanara(1 / 2)
s.plot(edge_labels=False, polygon_labels=False)
../_images/6727c29e058c0a012fe1519282174fea0b5af9c3fef691d6b5756b13ac7f5c5d.png
ss = s.delaunay_decomposition()
gs = ss.graphical_surface(edge_labels=False, polygon_labels=False)
gs.make_all_visible(limit=20)
gs.plot()
../_images/24c02b677bdda03c040874545d264d2e20aed7e3aeb53bad8fab46e66dcb9574.png
m = matrix([[2, 0], [0, 1 / 2]])
ms = m * s
gs = ms.graphical_surface(edge_labels=False, polygon_labels=False)
gs.make_all_visible(limit=20)
gs.plot()
../_images/77ce5ebc2d1eaf610bc812f294966515179fb7ee224b3d1d444837557afca47e.png
mss = ms.delaunay_decomposition()
gs = mss.graphical_surface(edge_labels=False, polygon_labels=False)
gs.make_all_visible(limit=20)
gs.plot()
../_images/a3b9fb3314ffd61c67b208e4ce8b97db071cf70ec93715c01ea728e61467a773.png

You can tell from the above picture that \(m\) is in the Veech group.