homology
¶
Absolute and relative (simplicial) homology of surfaces.
EXAMPLES:
The absolute homology of the regular octagon:
sage: from flatsurf import translation_surfaces, SimplicialHomology
sage: S = translation_surfaces.regular_octagon()
sage: H = SimplicialHomology(S)
A basis of homology, with generators written as (sums of) oriented edges:
sage: H.gens()
(B[(0, 1)], B[(0, 2)], B[(0, 3)], B[(0, 0)])
The absolute homology of the unfolding of the (3, 4, 13) triangle:
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(angles=[3, 4, 13])
sage: S = similarity_surfaces.billiard(P).minimal_cover(cover_type="translation")
sage: S.genus()
8
sage: H = SimplicialHomology(S)
sage: len(H.gens())
16
Relative homology, relative to the singularities of the surface:
sage: S = S.erase_marked_points() # optional: pyflatsurf # random output due to deprecation warnings
sage: H1 = SimplicialHomology(S, relative=S.vertices()) # optional: pyflatsurf
sage: len(H1.gens()) # optional: pyflatsurf
17
We can also form relative \(H_0\) and \(H_2\), though they are not overly interesting of course:
sage: H0 = SimplicialHomology(S, relative=S.vertices(), k=0)
sage: len(H0.gens())
0
sage: H2 = SimplicialHomology(S, relative=S.vertices(), k=2)
sage: len(H2.gens())
1
We create the homology class corresponding to the core curve of a cylinder (the interface here is terrible at the moment, see https://github.com/flatsurf/sage-flatsurf/issues/166):
sage: from flatsurf import Polygon, similarity_surfaces, SimplicialHomology, GL2ROrbitClosure
sage: P = Polygon(angles=[3, 4, 13])
sage: S = similarity_surfaces.billiard(P).minimal_cover(cover_type="translation").triangulate().codomain()
sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion # optional: pyflatsurf
sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf
sage: T = conversion.codomain() # optional: pyflatsurf
sage: O = GL2ROrbitClosure(T) # optional: pyflatsurf
sage: D = O.decomposition((13, 37)) # optional: pyflatsurf
sage: cylinder = D.cylinders()[0] # optional: pyflatsurf
sage: H = SimplicialHomology(S)
sage: core = sum(int(str(chain[edge])) * H(conversion.section(edge.positive())) for segment in cylinder.right() for chain in [segment.saddleConnection().chain()] for edge in T.edges()) # optional: pyflatsurf
sage: core # optional: pyflatsurf # random output, the chosen generators vary between operating systems
972725347814111665129717*B[((0, -1/2*c0, -1/2*c0^2 + 3/2), 2)] + 587352809047576581321682*B[((0, -1/2*c0^2 + 1, -1/2*c0^3 + 3/2*c0), 2)] + 60771110563809382932401*B[((0, -1/2*c0^2 + 1, 1/2*c0^3 - 3/2*c0), 2)] ...
- flatsurf.geometry.homology.SimplicialHomology(surface, k=1, coefficients=None, relative=None, implementation='generic', category=None)[source]¶
Return the
k
-th simplicial homology group ofsurface
.INPUT:
surface
– a surfacek
– an integer (default:1
)coefficients
– a ring (default: the integer ring); consider the homology with coefficients in this ringrelative
– a set (default: the empty set); if non-empty, then relative homology with respect to this set is constructed.implementation
– a string (default:"generic"
); the algorithm used to compute the homology groups. Currently only"generic"
is supported, i.e., the groups are computed with the generic homology machinery from SageMath.category
– a category; if not specified, a category for the homology group is chosen automatically depending oncoefficients
.
- class flatsurf.geometry.homology.SimplicialHomologyClass(parent, chain)[source]¶
An element of a homology group.
INPUT:
parent
– aSimplicialHomology
chain
– an element of theSimplicialHomologyGroup.chain_module()
.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: S = translation_surfaces.regular_octagon() sage: H0 = SimplicialHomology(S, k=0) sage: g0 = H0.gens()[0] sage: g0 B[Vertex 0 of polygon 0] sage: H1 = SimplicialHomology(S, k=1) sage: g1 = H1.gens()[0] sage: g1 B[(0, 1)] sage: H2 = SimplicialHomology(S, k=2) sage: g2 = H2.gens()[0] sage: g2 B[0]
- algebraic_intersection(other)[source]¶
Return the algebraic intersection of this class of a closed curve with
other
.INPUT:
other
- aSimplicialHomologyClass
in the same homology
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: S = translation_surfaces.regular_octagon() sage: H = SimplicialHomology(S) sage: H((0, 0)).algebraic_intersection(H((0, 1))) 1 sage: a = H((0, 1)) sage: b = 3 * H((0, 0)) + 5 * H((0, 2)) - 2 * H((0, 4)) sage: a.algebraic_intersection(b) 0 sage: a = 2 * H((0, 0)) + H((0, 1)) + 3 * H((0, 2)) + H((0, 3)) + H((0, 4)) + H((0, 5)) + H((0, 7)) sage: b = H((0, 0)) + 2 * H((0, 1)) + H((0, 2)) + H((0, 3)) + 2 * H((0, 4)) + 3 * H((0, 5)) + 4 * H((0, 6)) + 3 * H((0, 7)) sage: a.algebraic_intersection(b) -6 sage: S = translation_surfaces.cathedral(1, 4) sage: H = SimplicialHomology(S) sage: a = H((0, 3)) sage: b = H((2, 1)) sage: a.algebraic_intersection(b) 0 sage: a = H((0, 3)) sage: b = H((3, 4)) + 3 * H((0, 3)) + 2 * H((0, 0)) - H((1, 7)) + 7 * H((2, 1)) - 2 * H((2, 2)) sage: a.algebraic_intersection(b) 2
- coefficient(gen)[source]¶
Return the multiplicity of this class at a generator of homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: a,b = H.gens() sage: a.coefficient(a) 1 sage: a.coefficient(b) 0
- coefficients()[source]¶
Return the coefficients of this element in terms of the generators of homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.gens()[0].coefficients() (1, 0) sage: H.gens()[1].coefficients() (0, 1)
- surface()[source]¶
Return the surface on which this homology class in defined.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: h = H.gens()[0] sage: h.surface() Translation Surface in H_1(0) built from a square
- class flatsurf.geometry.homology.SimplicialHomologyGroup(surface, k, coefficients, relative, implementation, category)[source]¶
The
k
-th simplicial homology group of thesurface
withcoefficients
.INPUT:
surface
– a finite type surface without boundaryk
– an integercoefficients
– a ringrelative
– a subset of points of thesurface
implementation
– a string; the algorithm used to compute the homology, only"generic"
is supported at the moment which uses the generic homology machinery of SageMath.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology, MutableOrientedSimilaritySurface sage: T = translation_surfaces.square_torus()
Surfaces must be immutable to compute their homology:
sage: T = MutableOrientedSimilaritySurface.from_surface(T) sage: SimplicialHomology(T) Traceback (most recent call last): ... ValueError: surface must be immutable to compute homology
sage: T.set_immutable() sage: SimplicialHomology(T) H₁(Translation Surface in H_1(0) built from a square)
- Element¶
alias of
SimplicialHomologyClass
- boundary(chain)[source]¶
Return the boundary of
chain
as an element of thechain_module()
in lower dimension.INPUT:
chain
– an element ofchain_module()
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus()
sage: H = SimplicialHomology(T, k=0) sage: c = H.chain_module().an_element(); c 2*B[Vertex 0 of polygon 0] sage: H.boundary(c) 0
sage: H = SimplicialHomology(T, k=1) sage: c = H.chain_module().an_element(); c 2*B[(0, 0)] + 2*B[(0, 1)] sage: H.boundary(c) 0
sage: H = SimplicialHomology(T, k=2) sage: c = H.chain_module().an_element(); c 2*B[0] sage: H.boundary(c) 0
- chain_module()[source]¶
Return the free module of simplicial chains of the surface i.e., formal sums of simplicies, e.g., formal sums of edges of the surface.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.chain_module() Free module generated by {(0, 1), (0, 0)} over Integer Ring
- change(k=None)[source]¶
Return this homology but in dimension
k
.EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H H₁(Translation Surface in H_1(0) built from a square) sage: H.change(k=0) H₀(Translation Surface in H_1(0) built from a square)
- degree()[source]¶
Return the degree \(k\) for this homology \(H_k\).
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.degree() 1
- gens()[source]¶
Return generators of homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus()
sage: H = SimplicialHomology(T) sage: H.gens() (B[(0, 1)], B[(0, 0)])
sage: H = SimplicialHomology(T, 0) sage: H.gens() (B[Vertex 0 of polygon 0],)
sage: H = SimplicialHomology(T, 2) sage: H.gens() (B[0],)
- hom(f, codomain=None)[source]¶
Return the homomorphism of homology induced by
f
.INPUT:
f
– a morphism of surfaces or a matrixcodomain
– the simplicial homology this morphism maps into
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: M = matrix([[1, 2], [0, 1]]) sage: f = A.derivative().section()(M, check=False) sage: from flatsurf import SimplicialHomology sage: H = SimplicialHomology(S) sage: g = H.hom(f) sage: g.matrix() # optional: pyflatsurf [1 0] [2 1] sage: H.gens() (B[(0, 1)], B[(0, 0)]) sage: [g(h) for h in H.gens()] # optional: pyflatsurf [2*B[(0, 0)] + B[(0, 1)], B[(0, 0)]]
- is_absolute()[source]¶
Return whether this is absolute homology (and not relative to some set of points.)
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.is_absolute() True
- ngens()[source]¶
Return the Betti number of this homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: T = translation_surfaces.square_torus() sage: H = T.homology() sage: H.ngens() 2
- simplices()[source]¶
Return the simplices that form the generators of
chain_module()
.EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus()
In dimension 1, this is the set of edges:
sage: H = SimplicialHomology(T) sage: H.simplices() ((0, 1), (0, 0))
In dimension 0, this is the set of vertices:
sage: H = SimplicialHomology(T, k=0) sage: H.simplices() (Vertex 0 of polygon 0,)
In dimension 2, this is the set of polygons:
sage: H = SimplicialHomology(T, k=2) sage: H.simplices() (0,)
In all other dimensions, there are no simplices:
sage: H = SimplicialHomology(T, k=12) sage: H.simplices() ()
- some_elements()[source]¶
Return some typical homology classes (for testing.)
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.some_elements() [0, B[(0, 1)], B[(0, 0)]]
- surface()[source]¶
Return the surface of which this is the homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus() sage: H = SimplicialHomology(T) sage: H.surface() == T True
- symplectic_basis()[source]¶
Return a symplectic basis of generators of this homology group.
A symplectic basis is a basis of the form \((e_1, \ldots, e_n, f_1, \ldots, f_n)\) such that for the
SimplicialHomologyClass.algebraic_intersection()
, \(e_i \cdot e_j = f_i \cdot f_j = 0\) and \(e_i \cdot f_j = \delta_{ij}\) for all \(i\) and \(j\).EXAMPLES:
sage: from flatsurf import translation_surfaces, SimplicialHomology sage: T = translation_surfaces.square_torus()
sage: H = SimplicialHomology(T) sage: H.symplectic_basis() [B[(0, 0)], B[(0, 1)]]
- class flatsurf.geometry.homology.SimplicialHomologyMorphismSpace(domain, codomain, category=None)[source]¶
The space of homomorphisms from the homology
domain
tocodomain
.EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: M = matrix([[1, 0], [0, 1]]) sage: f = A.derivative().section()(M, check=False) sage: from flatsurf import SimplicialHomology sage: H = SimplicialHomology(S) sage: g = H.hom(f) sage: G = g.parent()
Since these are homomorphisms in homology, they preserve the linear structure of the homology:
sage: g.category() Category of endsets of modules over Integer Ring
- an_element()[source]¶
Return some homomorphism in homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: T = translation_surfaces.mcmullen_L(1, 1, 1, 1) sage: End(S.homology()).an_element() Generic endomorphism of H₁(Translation Surface in H_1(0) built from a square) Defn: [1 0] [0 1] sage: Hom(S.homology(), T.homology()).an_element() Generic morphism: From: H₁(Translation Surface in H_1(0) built from a square) To: H₁(Translation Surface in H_2(2) built from 3 squares) Defn: [0 0] [0 0] [0 0] [0 0]
- base_ring()[source]¶
Return the ring over which these homomorphisms are defined.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: End(S.homology()).base_ring() Integer Ring
- identity()[source]¶
Return the identity homomorphism in this space (if it exists.)
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: T = translation_surfaces.mcmullen_L(1, 1, 1, 1) sage: End(S.homology()).identity() Generic endomorphism of H₁(Translation Surface in H_1(0) built from a square) Defn: [1 0] [0 1]
- class flatsurf.geometry.homology.SimplicialHomologyMorphism_base[source]¶
Base class for all homomorphisms in homology.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: M = matrix([[1, 0], [0, 1]]) sage: f = A.derivative().section()(M, check=False) sage: from flatsurf import SimplicialHomology sage: H = SimplicialHomology(S) sage: g = H.hom(f)
- matrix()[source]¶
Return the matrix describing this homomorphism on the generators of homology (as a multiplication from the left.)
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.mcmullen_L(1, 1, 1, 1) sage: A = S.affine_automorphism_group() sage: M = matrix([[1, 2], [0, 1]]) sage: f = A.derivative().section()(M, check=False) sage: from flatsurf import SimplicialHomology sage: H = SimplicialHomology(S) sage: H.gens() (B[(0, 1)], B[(0, 0)], B[(1, 1)], B[(2, 0)]) sage: g = H.hom(f) sage: g.matrix() # optional: pyflatsurf [1 0 0 0] [1 1 2 0] [0 0 1 0] [1 0 0 1]
- class flatsurf.geometry.homology.SimplicialHomologyMorphism_induced(parent, morphism)[source]¶
A homomorphism of homology induced by a morphism of surfaces.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus() sage: A = S.affine_automorphism_group() sage: M = matrix([[1, 2], [0, 1]]) sage: f = A.derivative().section()(M, check=False) sage: from flatsurf import SimplicialHomology sage: H = SimplicialHomology(S) sage: g = H.hom(f)
- class flatsurf.geometry.homology.SimplicialHomologyMorphism_matrix(parent, matrix)[source]¶
A homomorphism of homology that is given by a matrix that describes the homomorphism on the generators.
EXAMPLES:
sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.mcmullen_L(1, 1, 1, 1) sage: T = translation_surfaces.square_torus() sage: f = S.homology().hom(matrix([[1, 2, 3, 4], [5, 6, 7, 8]]), codomain=T.homology()) sage: f Generic morphism: From: H₁(Translation Surface in H_2(2) built from 3 squares) To: H₁(Translation Surface in H_1(0) built from a square) Defn: [1 2 3 4] [5 6 7 8]