# ********************************************************************
# This file is part of sage-flatsurf.
#
# Copyright (C) 2016-2020 Vincent Delecroix
# 2020-2023 Julian Rüth
# 2023 Sam Freedman
#
# sage-flatsurf is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# sage-flatsurf is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
# ********************************************************************
from sage.rings.all import ZZ, QQ, RIF, AA, NumberField, polygen
from sage.modules.all import VectorSpace, vector
from sage.structure.coerce import py_scalar_parent
from sage.structure.element import get_coercion_model, parent
from sage.misc.cachefunc import cached_method
from sage.structure.sequence import Sequence
from flatsurf.geometry.polygon import (
polygons,
EuclideanPolygon,
Polygon,
)
from flatsurf.geometry.surface import (
OrientedSimilaritySurface,
MutableOrientedSimilaritySurface,
)
from flatsurf.geometry.origami import Origami
ZZ_1 = ZZ(1)
ZZ_2 = ZZ(2)
[docs]
def flipper_nf_to_sage(K, name="a"):
r"""
Convert a flipper number field into a Sage number field
.. NOTE::
Currently, the code is not careful at all with root isolation.
EXAMPLES::
sage: import flipper # optional - flipper # random output due to matplotlib warnings with some combinations of setuptools and matplotlib
sage: import realalg # optional - flipper
sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_to_sage
sage: K = realalg.RealNumberField([-2r] + [0r]*5 + [1r]) # optional - flipper
sage: K_sage = flipper_nf_to_sage(K) # optional - flipper
sage: K_sage # optional - flipper
Number Field in a with defining polynomial x^6 - 2 with a = 1.122462048309373?
sage: AA(K_sage.gen()) # optional - flipper
1.122462048309373?
"""
r = K.lmbda.interval()
lower = r.lower * ZZ(10) ** (-r.precision)
upper = r.upper * ZZ(10) ** (-r.precision)
p = QQ["x"](K.coefficients)
s = AA.polynomial_root(p, RIF(lower, upper))
return NumberField(p, name, embedding=s)
[docs]
def flipper_nf_element_to_sage(x, K=None):
r"""
Convert a flipper number field element into Sage
EXAMPLES::
sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_element_to_sage
sage: import flipper # optional - flipper
sage: T = flipper.load('SB_6') # optional - flipper
sage: h = T.mapping_class('s_0S_1S_2s_3s_4s_3S_5') # optional - flipper
sage: flipper_nf_element_to_sage(h.dilatation()) # optional - flipper
a
sage: AA(_) # optional - flipper
6.45052513748511?
"""
if K is None:
K = flipper_nf_to_sage(x.field)
coeffs = list(map(QQ, x.coefficients))
coeffs.extend([0] * (K.degree() - len(coeffs)))
return K(coeffs)
[docs]
class EInfinitySurface(OrientedSimilaritySurface):
r"""
The surface based on the `E_\infinity` graph.
The biparite graph is shown below, with edges numbered::
0 1 2 -2 3 -3 4 -4
*---o---*---o---*---o---*---o---*...
|
|-1
o
Here, black vertices are colored ``*``, and white ``o``.
Black nodes represent vertical cylinders and white nodes
represent horizontal cylinders.
"""
def __init__(self, lambda_squared=None, field=None):
if lambda_squared is None:
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
R = PolynomialRing(ZZ, "x")
x = R.gen()
field = NumberField(
x**3 - ZZ(5) * x**2 + ZZ(4) * x - ZZ(1), "r", embedding=AA(ZZ(4))
)
self._lambda_squared = field.gen()
else:
if field is None:
self._lambda_squared = lambda_squared
field = lambda_squared.parent()
else:
self._lambda_squared = field(lambda_squared)
from flatsurf.geometry.categories import TranslationSurfaces
super().__init__(
field,
category=TranslationSurfaces().InfiniteType().Connected().WithoutBoundary(),
)
[docs]
def is_compact(self):
r"""
Return whether this surface is compact as a topological space, i.e.,
return ``False``.
This implements
:meth:`flatsurf.geometry.categories.topological_surfaces.TopologicalSurfaces.ParentMethods.is_compact`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S.is_compact()
False
"""
return False
[docs]
def is_mutable(self):
r"""
Return whether this surface is mutable, i.e., return ``False``.
This implements
:meth:`flatsurf.geometry.categories.topological_surfaces.TopologicalSurfaces.ParentMethods.is_mutable`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S.is_mutable()
False
"""
return False
[docs]
def roots(self):
r"""
Return root labels for the polygons forming the connected
components of this surface.
This implements
:meth:`flatsurf.geometry.categories.polygonal_surfaces.PolygonalSurfaces.ParentMethods.roots`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S.roots()
(0,)
"""
return (ZZ(0),)
def _repr_(self):
r"""
Return a printable representation of this surface.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S
EInfinitySurface(r)
"""
return f"EInfinitySurface({repr(self._lambda_squared)})"
[docs]
@cached_method
def get_white(self, n):
r"""Get the weight of the white endpoint of edge n."""
if n == 0 or n == 1:
return self._lambda_squared
if n == -1:
return self._lambda_squared - 1
if n == 2:
return 1 - 3 * self._lambda_squared + self._lambda_squared**2
if n > 2:
x = self.get_white(n - 1)
y = self.get_black(n)
return self._lambda_squared * y - x
return self.get_white(-n)
[docs]
@cached_method
def get_black(self, n):
r"""Get the weight of the black endpoint of edge n."""
if n == 0:
return self.base_ring().one()
if n == 1 or n == -1 or n == 2:
return self._lambda_squared - 1
if n > 2:
x = self.get_black(n - 1)
y = self.get_white(n - 1)
return y - x
return self.get_black(1 - n)
[docs]
def polygon(self, lab):
r"""
Return the polygon labeled by ``lab``.
"""
if lab not in self.labels():
raise ValueError(f"{lab=} not a valid label")
return polygons.rectangle(2 * self.get_black(lab), self.get_white(lab))
[docs]
def labels(self):
r"""
Return the labels of this surface.
This implements
:meth:`flatsurf.geometry.categories.polygonal_surfaces.PolygonalSurfaces.ParentMethods.labels`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S.labels()
(0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 7, -7, 8, …)
"""
from flatsurf.geometry.surface import LabelsFromView
return LabelsFromView(self, ZZ, finite=False)
[docs]
def opposite_edge(self, p, e):
r"""
Return the pair ``(pp,ee)`` to which the edge ``(p,e)`` is glued to.
"""
if p == 0:
if e == 0:
return (0, 2)
if e == 1:
return (1, 3)
if e == 2:
return (0, 0)
if e == 3:
return (1, 1)
if p == 1:
if e == 0:
return (-1, 2)
if e == 1:
return (0, 3)
if e == 2:
return (2, 0)
if e == 3:
return (0, 1)
if p == -1:
if e == 0:
return (2, 2)
if e == 1:
return (-1, 3)
if e == 2:
return (1, 0)
if e == 3:
return (-1, 1)
if p == 2:
if e == 0:
return (1, 2)
if e == 1:
return (-2, 3)
if e == 2:
return (-1, 0)
if e == 3:
return (-2, 1)
if p > 2:
if e % 2:
return -p, (e + 2) % 4
else:
return 1 - p, (e + 2) % 4
else:
if e % 2:
return -p, (e + 2) % 4
else:
return 1 - p, (e + 2) % 4
def __hash__(self):
r"""
Return a hash value for this surface that is compatible with
:meth:`__eq__`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: hash(translation_surfaces.e_infinity_surface()) == hash(translation_surfaces.e_infinity_surface())
True
"""
return hash((self.base_ring(), self._lambda_squared))
def __eq__(self, other):
r"""
Return whether this surface is indistinguishable from ``other``.
See :meth:`SimilaritySurfaces.FiniteType._test_eq_surface` for details
on this notion of equality.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.e_infinity_surface()
sage: S == S
True
"""
if not isinstance(other, EInfinitySurface):
return False
return (
self._lambda_squared == other._lambda_squared
and self.base_ring() == other.base_ring()
)
[docs]
class TFractalSurface(OrientedSimilaritySurface):
r"""
The TFractal surface.
The TFractal surface is a translation surface of finite area built from
infinitely many polygons. The basic building block is the following polygon::
w/r w w/r
+---+------+---+
| 1 | 2 | 3 | h2
+---+------+---+
| 0 | h1
+------+
w
where ``w``, ``h1``, ``h2``, ``r`` are some positive numbers. Default values
are ``w=h1=h2=1`` and ``r=2``.
.. TODO::
In that surface, the linear flow can be computed more efficiently using
only one affine interval exchange transformation with 5 intervals. But
the underlying geometric construction is not a covering.
Warning: we can not play at the same time with tuples and element of a
cartesian product (see Sage trac ticket #19555)
"""
def __init__(self, w=ZZ_1, r=ZZ_2, h1=ZZ_1, h2=ZZ_1):
from sage.combinat.words.words import Words
field = Sequence([w, r, h1, h2]).universe()
if not field.is_field():
field = field.fraction_field()
from flatsurf.geometry.categories import TranslationSurfaces
super().__init__(
field,
category=TranslationSurfaces()
.InfiniteType()
.WithoutBoundary()
.Compact()
.Connected(),
)
self._w = field(w)
self._r = field(r)
self._h1 = field(h1)
self._h2 = field(h2)
self._words = Words("LR", finite=True, infinite=False)
self._wL = self._words("L")
self._wR = self._words("R")
self._root = (self._words(""), 0)
[docs]
def roots(self):
r"""
Return root labels for the polygons forming the connected
components of this surface.
This implements
:meth:`flatsurf.geometry.categories.polygonal_surfaces.PolygonalSurfaces.ParentMethods.roots`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.t_fractal()
sage: S.roots()
((word: , 0),)
"""
return (self._root,)
[docs]
def is_mutable(self):
r"""
Return whether this surface is mutable, i.e., return ``False``.
This implements
:meth:`flatsurf.geometry.categories.topological_surfaces.TopologicalSurfaces.ParentMethods.is_mutable`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.t_fractal()
sage: S.is_mutable()
False
"""
return False
def _repr_(self):
return "The T-fractal surface with parameters w={}, r={}, h1={}, h2={}".format(
self._w,
self._r,
self._h1,
self._h2,
)
[docs]
@cached_method
def labels(self):
r"""
Return the labels of this surface.
This implements
:meth:`flatsurf.geometry.categories.polygonal_surfaces.PolygonalSurfaces.ParentMethods.labels`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.t_fractal()
sage: S.labels()
((word: , 0), (word: , 2), (word: , 3), (word: , 1), (word: R, 2), (word: R, 0), (word: L, 2), (word: L, 0), (word: R, 3), (word: R, 1), (word: L, 3), (word: L, 1), (word: RR, 2), (word: RR, 0), (word: RL, 2), (word: RL, 0), …)
"""
from sage.sets.finite_enumerated_set import FiniteEnumeratedSet
from sage.categories.cartesian_product import cartesian_product
labels = cartesian_product([self._words, FiniteEnumeratedSet([0, 1, 2, 3])])
from flatsurf.geometry.surface import LabelsFromView
return LabelsFromView(self, labels, finite=False)
[docs]
def opposite_edge(self, p, e):
r"""
Labeling of polygons::
wl,0 wr,0
+-----+---------+------+
| | | |
| w,1 | w,2 | w,3 |
| | | |
+-----+---------+------+
| |
| w,0 |
| |
+---------+
w
and we always have: bot->0, right->1, top->2, left->3
EXAMPLES::
sage: import flatsurf.geometry.similarity_surface_generators as sfg
sage: T = sfg.tfractal_surface()
sage: W = T._words
sage: w = W('LLRLRL')
sage: T.opposite_edge((w,0),0)
((word: LLRLR, 1), 2)
sage: T.opposite_edge((w,0),1)
((word: LLRLRL, 0), 3)
sage: T.opposite_edge((w,0),2)
((word: LLRLRL, 2), 0)
sage: T.opposite_edge((w,0),3)
((word: LLRLRL, 0), 1)
"""
w, i = p
w = self._words(w)
i = int(i)
e = int(e)
def f():
if e == 0:
return 2
if e == 1:
return 3
if e == 2:
return 0
if e == 3:
return 1
raise ValueError("e (={!r}) must be either 0,1,2 or 3".format(e))
def label():
if i == 0:
if e == 0:
if w.is_empty():
return (w, 2)
elif w[-1] == "L":
return (w[:-1], 1)
elif w[-1] == "R":
return (w[:-1], 3)
if e == 1:
return (w, 0)
if e == 2:
return (w, 2)
if e == 3:
return (w, 0)
elif i == 1:
if e == 0:
return (w + self._wL, 2)
if e == 1:
return (w, 2)
if e == 2:
return (w + self._wL, 0)
if e == 3:
return (w, 3)
elif i == 2:
if e == 0:
return (w, 0)
if e == 1:
return (w, 3)
if e == 2:
if w.is_empty():
return (w, 0)
if w[-1] == "L":
return (w[:-1], 1)
if w[-1] == "R":
return (w[:-1], 3)
if e == 3:
return (w, 1)
elif i == 3:
if e == 0:
return (w + self._wR, 2)
if e == 1:
return (w, 1)
if e == 2:
return (w + self._wR, 0)
if e == 3:
return (w, 2)
raise ValueError("i (={!r}) must be either 0,1,2 or 3".format(i))
return label(), f()
[docs]
def polygon(self, lab):
r"""
Return the polygon with label ``lab``::
w/r w/r
+---+------+---+
| 1 | 2 | 3 |
| | | | h2
+---+------+---+
| 0 | h1
+------+
w
EXAMPLES::
sage: import flatsurf.geometry.similarity_surface_generators as sfg
sage: T = sfg.tfractal_surface()
sage: T.polygon(('L',0))
Polygon(vertices=[(0, 0), (1/2, 0), (1/2, 1/2), (0, 1/2)])
sage: T.polygon(('LRL',0))
Polygon(vertices=[(0, 0), (1/8, 0), (1/8, 1/8), (0, 1/8)])
"""
w = self._words(lab[0])
return (1 / self._r ** w.length()) * self._base_polygon(lab[1])
@cached_method
def _base_polygon(self, i):
if i == 0:
w = self._w
h = self._h1
elif i == 1 or i == 3:
w = self._w / self._r
h = self._h2
elif i == 2:
w = self._w
h = self._h2
else:
raise ValueError("i must be one of 0, 1, 2, 3")
return Polygon(
base_ring=self.base_ring(), edges=[(w, 0), (0, h), (-w, 0), (0, -h)]
)
def __hash__(self):
r"""
Return a hash value for this surface that is compatible with
:meth:`__eq__`.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: hash(translation_surfaces.t_fractal()) == hash(translation_surfaces.t_fractal())
True
"""
return hash((self._w, self._h1, self._r, self._h2))
def __eq__(self, other):
r"""
Return whether this surface is indistinguishable from ``other``.
See :meth:`SimilaritySurfaces.FiniteType._test_eq_surface` for details
on this notion of equality.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: translation_surfaces.t_fractal() == translation_surfaces.t_fractal()
True
"""
if not isinstance(other, TFractalSurface):
return False
return (
self._w == other._w
and self._h1 == other._h1
and self._r == other._r
and self._h2 == other._h2
)
[docs]
def tfractal_surface(w=ZZ_1, r=ZZ_2, h1=ZZ_1, h2=ZZ_1):
return TFractalSurface(w, r, h1, h2)
[docs]
class SimilaritySurfaceGenerators:
r"""
Examples of similarity surfaces.
"""
[docs]
@staticmethod
def example():
r"""
Construct a SimilaritySurface from a pair of triangles.
EXAMPLES::
sage: from flatsurf import similarity_surfaces
sage: ex = similarity_surfaces.example()
sage: ex
Genus 1 Surface built from 2 isosceles triangles
TESTS::
sage: TestSuite(ex).run()
sage: from flatsurf.geometry.categories import SimilaritySurfaces
sage: ex in SimilaritySurfaces()
True
"""
s = MutableOrientedSimilaritySurface(QQ)
s.add_polygon(
Polygon(vertices=[(0, 0), (2, -2), (2, 0)], base_ring=QQ), label=0
)
s.add_polygon(Polygon(vertices=[(0, 0), (2, 0), (1, 3)], base_ring=QQ), label=1)
s.glue((0, 0), (1, 1))
s.glue((0, 1), (1, 2))
s.glue((0, 2), (1, 0))
s.set_immutable()
return s
[docs]
@staticmethod
def self_glued_polygon(P):
r"""
Return the HalfTranslationSurface formed by gluing all edges of P to themselves.
EXAMPLES::
sage: from flatsurf import Polygon, similarity_surfaces
sage: p = Polygon(edges=[(2,0),(-1,3),(-1,-3)])
sage: s = similarity_surfaces.self_glued_polygon(p)
sage: s
Half-Translation Surface in Q_0(-1^4) built from an isosceles triangle
sage: TestSuite(s).run()
"""
s = MutableOrientedSimilaritySurface(P.base_ring())
s.add_polygon(P)
for i in range(len(P.vertices())):
s.glue((0, i), (0, i))
s.set_immutable()
return s
[docs]
@staticmethod
def billiard(P, rational=None):
r"""
Return the ConeSurface associated to the billiard in the polygon ``P``.
INPUT:
- ``P`` -- a polygon
- ``rational`` -- a boolean or ``None`` (default: ``None``) -- whether
to assume that all the angles of ``P`` are a rational multiple of π.
EXAMPLES::
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(vertices=[(0,0), (1,0), (0,1)])
sage: Q = similarity_surfaces.billiard(P, rational=True)
doctest:warning
...
UserWarning: the rational keyword argument of billiard() has been deprecated and will be removed in a future version of sage-flatsurf; rationality checking is now faster so this is not needed anymore
sage: Q
Genus 0 Rational Cone Surface built from 2 isosceles triangles
sage: from flatsurf.geometry.categories import ConeSurfaces
sage: Q in ConeSurfaces().Rational()
True
sage: M = Q.minimal_cover(cover_type="translation")
sage: M
Minimal Translation Cover of Genus 0 Rational Cone Surface built from 2 isosceles triangles
sage: TestSuite(M).run()
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: M in TranslationSurfaces()
True
A non-convex examples (L-shape polygon)::
sage: P = Polygon(vertices=[(0,0), (2,0), (2,1), (1,1), (1,2), (0,2)])
sage: Q = similarity_surfaces.billiard(P)
sage: TestSuite(Q).run()
sage: M = Q.minimal_cover(cover_type="translation")
sage: TestSuite(M).run()
sage: M.stratum()
H_2(2, 0^5)
A quadrilateral from Eskin-McMullen-Mukamel-Wright::
sage: from flatsurf import Polygon
sage: P = Polygon(angles=(1, 1, 1, 7))
sage: S = similarity_surfaces.billiard(P)
sage: TestSuite(S).run()
sage: S = S.minimal_cover(cover_type="translation")
sage: TestSuite(S).run()
sage: S = S.erase_marked_points() # optional: pyflatsurf
sage: TestSuite(S).run()
sage: S, _ = S.normalized_coordinates()
sage: TestSuite(S).run()
Unfolding a triangle with non-algebraic lengths::
sage: from flatsurf import EuclideanPolygonsWithAngles
sage: E = EuclideanPolygonsWithAngles((3, 3, 5))
sage: from pyexactreal import ExactReals # optional: pyexactreal # random output due to cppyy deprecation warnings
sage: R = ExactReals(E.base_ring()) # optional: pyexactreal
sage: angles = (3, 3, 5)
sage: slopes = EuclideanPolygonsWithAngles(*angles).slopes()
sage: P = Polygon(angles=angles, edges=[R.random_element() * slopes[0]]) # optional: pyexactreal
sage: S = similarity_surfaces.billiard(P); S # optional: pyexactreal
Genus 0 Rational Cone Surface built from 2 isosceles triangles
sage: TestSuite(S).run() # long time (6s), optional: pyexactreal
sage: from flatsurf.geometry.categories import ConeSurfaces
sage: S in ConeSurfaces()
True
"""
if not isinstance(P, EuclideanPolygon):
raise TypeError("invalid input")
if rational is not None:
import warnings
warnings.warn(
"the rational keyword argument of billiard() has been deprecated and will be removed in a future version of sage-flatsurf; rationality checking is now faster so this is not needed anymore"
)
from flatsurf.geometry.categories import ConeSurfaces
category = ConeSurfaces()
if P.is_rational():
category = category.Rational()
V = P.base_ring() ** 2
if not P.is_convex():
# triangulate non-convex ones
base_ring = P.base_ring()
comb_edges = P.triangulation()
vertices = P.vertices()
comb_triangles = SimilaritySurfaceGenerators._billiard_build_faces(
len(vertices), comb_edges
)
triangles = []
internal_edges = [] # list (p1, e1, p2, e2)
external_edges = [] # list (p1, e1)
edge_to_lab = {}
for num, (i, j, k) in enumerate(comb_triangles):
triangles.append(
Polygon(
vertices=[vertices[i], vertices[j], vertices[k]],
base_ring=base_ring,
)
)
edge_to_lab[(i, j)] = (num, 0)
edge_to_lab[(j, k)] = (num, 1)
edge_to_lab[(k, i)] = (num, 2)
for num, (i, j, k) in enumerate(comb_triangles):
if (j, i) in edge_to_lab:
num2, e2 = edge_to_lab[j, i]
internal_edges.append((num, 0, num2, e2))
else:
external_edges.append((num, 0))
if (k, j) in edge_to_lab:
num2, e2 = edge_to_lab[k, j]
internal_edges.append((num, 1, num2, e2))
else:
external_edges.append((num, 1))
if (i, k) in edge_to_lab:
num2, e2 = edge_to_lab[i, k]
internal_edges.append((num, 2, num2, e2))
else:
external_edges.append((num, 1))
P = triangles
else:
internal_edges = []
external_edges = [(0, i) for i in range(len(P.vertices()))]
base_ring = P.base_ring()
P = [P]
surface = MutableOrientedSimilaritySurface(base_ring, category=category)
m = len(P)
for p in P:
surface.add_polygon(p)
for p in P:
surface.add_polygon(
Polygon(edges=[V((-x, y)) for x, y in reversed(p.edges())])
)
for p1, e1, p2, e2 in internal_edges:
surface.glue((p1, e1), (p2, e2))
ne1 = len(surface.polygon(p1).vertices())
ne2 = len(surface.polygon(p2).vertices())
surface.glue((m + p1, ne1 - e1 - 1), (m + p2, ne2 - e2 - 1))
for p, e in external_edges:
ne = len(surface.polygon(p).vertices())
surface.glue((p, e), (m + p, ne - e - 1))
surface.set_immutable()
return surface
@staticmethod
def _billiard_build_faces(n, edges):
r"""
Given a combinatorial list of pairs ``edges`` forming a cell-decomposition
of a polygon (with vertices labeled from ``0`` to ``n-1``) return the list
of cells.
This is a helper method for :meth:`billiard`.
EXAMPLES::
sage: from flatsurf.geometry.similarity_surface_generators import SimilaritySurfaceGenerators
sage: SimilaritySurfaceGenerators._billiard_build_faces(4, [(0,2)])
[[0, 1, 2], [2, 3, 0]]
sage: SimilaritySurfaceGenerators._billiard_build_faces(4, [(1,3)])
[[1, 2, 3], [3, 0, 1]]
sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(0,2), (0,3)])
[[0, 1, 2], [3, 4, 0], [0, 2, 3]]
sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(0,2)])
[[0, 1, 2], [2, 3, 4, 0]]
sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(1,4)])
[[1, 2, 3, 4], [4, 0, 1]]
sage: SimilaritySurfaceGenerators._billiard_build_faces(5, [(1,3),(3,0)])
[[1, 2, 3], [3, 4, 0], [0, 1, 3]]
"""
polygons = [list(range(n))]
for u, v in edges:
j = None
for i, p in enumerate(polygons):
if u in p and v in p:
if j is not None:
raise RuntimeError
j = i
if j is None:
raise RuntimeError
p = polygons[j]
i0 = p.index(u)
i1 = p.index(v)
if i0 > i1:
i0, i1 = i1, i0
polygons[j] = p[i0 : i1 + 1]
polygons.append(p[i1:] + p[: i0 + 1])
return polygons
[docs]
@staticmethod
def polygon_double(P):
r"""
Return the ConeSurface associated to the billiard in the polygon ``P``.
Differs from billiard(P) only in the graphical display. Here, we display
the polygons separately.
"""
from sage.matrix.constructor import matrix
n = len(P.vertices())
r = matrix(2, [-1, 0, 0, 1])
Q = Polygon(edges=[r * v for v in reversed(P.edges())])
surface = MutableOrientedSimilaritySurface(P.base_ring())
surface.add_polygon(P, label=0)
surface.add_polygon(Q, label=1)
for i in range(n):
surface.glue((0, i), (1, n - i - 1))
surface.set_immutable()
return surface
[docs]
@staticmethod
def right_angle_triangle(w, h):
r"""
TESTS::
sage: from flatsurf import similarity_surfaces
sage: R = similarity_surfaces.right_angle_triangle(2, 3)
sage: R
Genus 0 Cone Surface built from 2 right triangles
sage: from flatsurf.geometry.categories import ConeSurfaces
sage: R in ConeSurfaces()
True
sage: TestSuite(R).run()
"""
F = Sequence([w, h]).universe()
if not F.is_field():
F = F.fraction_field()
V = VectorSpace(F, 2)
s = MutableOrientedSimilaritySurface(F)
s.add_polygon(
Polygon(base_ring=F, edges=[V((w, 0)), V((-w, h)), V((0, -h))]), label=0
)
s.add_polygon(
Polygon(base_ring=F, edges=[V((0, h)), V((-w, -h)), V((w, 0))]), label=1
)
s.glue((0, 0), (1, 2))
s.glue((0, 1), (1, 1))
s.glue((0, 2), (1, 0))
s.set_immutable()
return s
similarity_surfaces = SimilaritySurfaceGenerators()
[docs]
class DilationSurfaceGenerators:
[docs]
@staticmethod
def basic_dilation_torus(a):
r"""
Return a dilation torus built from a `1 \times 1` square and a `a
\times 1` rectangle. Each edge of the square is glued to the opposite
edge of the rectangle. This results in horizontal edges glued by a
dilation with a scaling factor of a, and vertical edges being glued by
translation::
b a
+----+---------+
| 0 | 1 |
c | | | c
+----+---------+
a b
EXAMPLES::
sage: from flatsurf import dilation_surfaces
sage: ds = dilation_surfaces.basic_dilation_torus(AA(sqrt(2)))
sage: ds
Genus 1 Positive Dilation Surface built from a square and a rectangle
sage: from flatsurf.geometry.categories import DilationSurfaces
sage: ds in DilationSurfaces().Positive()
True
sage: TestSuite(ds).run()
"""
s = MutableOrientedSimilaritySurface(a.parent().fraction_field())
s.add_polygon(
Polygon(base_ring=s.base_ring(), edges=[(0, 1), (-1, 0), (0, -1), (1, 0)]),
label=0,
)
s.add_polygon(
Polygon(base_ring=s.base_ring(), edges=[(0, 1), (-a, 0), (0, -1), (a, 0)]),
label=1,
)
# label 1
s.glue((0, 0), (1, 2))
s.glue((0, 1), (1, 3))
s.glue((0, 2), (1, 0))
s.glue((0, 3), (1, 1))
s.set_roots([0])
s.set_immutable()
return s
[docs]
@staticmethod
def genus_two_square(a, b, c, d):
r"""
A genus two dilation surface is returned.
The unit square is made into an octagon by marking a point on
each of its edges. Then opposite sides of this octagon are
glued together by translation. (Since we currently require strictly
convex polygons, we subdivide the square into a hexagon and two
triangles as depicted below.) The parameters ``a``, ``b``, ``c``, and
``d`` should be real numbers strictly between zero and one. These
represent the lengths of an edge of the resulting octagon, as below::
c
+--+-------+
d |2/ |
|/ |
+ 0 +
| /|
| /1| b
+-------+--+
a
The other edges will have length `1-a`, `1-b`, `1-c`, and `1-d`.
Dilations used to glue edges will be by factors `c/a`, `d/b`,
`(1-c)/(1-a)` and `(1-d)/(1-b)`.
EXAMPLES::
sage: from flatsurf import dilation_surfaces
sage: ds = dilation_surfaces.genus_two_square(1/2, 1/3, 1/4, 1/5)
sage: ds
Genus 2 Positive Dilation Surface built from 2 right triangles and a hexagon
sage: from flatsurf.geometry.categories import DilationSurfaces
sage: ds in DilationSurfaces().Positive()
True
sage: TestSuite(ds).run()
"""
field = Sequence([a, b, c, d]).universe().fraction_field()
s = MutableOrientedSimilaritySurface(QQ)
hexagon = Polygon(
edges=[(a, 0), (1 - a, b), (0, 1 - b), (-c, 0), (c - 1, -d), (0, d - 1)],
base_ring=field,
)
s.add_polygon(hexagon, label=0)
s.set_roots([0])
triangle1 = Polygon(base_ring=field, edges=[(1 - a, 0), (0, b), (a - 1, -b)])
s.add_polygon(triangle1, label=1)
triangle2 = Polygon(base_ring=field, edges=[(1 - c, d), (c - 1, 0), (0, -d)])
s.add_polygon(triangle2, label=2)
s.glue((0, 0), (0, 3))
s.glue((0, 2), (0, 5))
s.glue((0, 1), (1, 2))
s.glue((0, 4), (2, 0))
s.glue((1, 0), (2, 1))
s.glue((1, 1), (2, 2))
s.set_immutable()
return s
dilation_surfaces = DilationSurfaceGenerators()
[docs]
class HalfTranslationSurfaceGenerators:
# TODO: ideally, we should be able to construct a non-convex polygon and make the construction
# below as a special case of billiard unfolding.
[docs]
@staticmethod
def step_billiard(w, h):
r"""
Return a (finite) step billiard associated to the given widths ``w`` and heights ``h``.
EXAMPLES::
sage: from flatsurf import half_translation_surfaces
sage: S = half_translation_surfaces.step_billiard([1,1,1,1], [1,1/2,1/3,1/5])
sage: S
StepBilliard(w=[1, 1, 1, 1], h=[1, 1/2, 1/3, 1/5])
sage: from flatsurf.geometry.categories import DilationSurfaces
sage: S in DilationSurfaces()
True
sage: TestSuite(S).run()
"""
n = len(h)
if len(w) != n:
raise ValueError
if n < 2:
raise ValueError("w and h must have length at least 2")
H = sum(h)
W = sum(w)
R = Sequence(w + h).universe()
base_ring = R.fraction_field()
P = []
Prev = []
x = 0
y = H
for i in range(n - 1):
P.append(
Polygon(
vertices=[
(x, 0),
(x + w[i], 0),
(x + w[i], y - h[i]),
(x + w[i], y),
(x, y),
],
base_ring=base_ring,
)
)
x += w[i]
y -= h[i]
assert x == W - w[-1]
assert y == h[-1]
P.append(
Polygon(
vertices=[(x, 0), (x + w[-1], 0), (x + w[-1], y), (x, y)],
base_ring=base_ring,
)
)
Prev = [
Polygon(
vertices=[(x, -y) for x, y in reversed(p.vertices())],
base_ring=base_ring,
)
for p in P
]
S = MutableOrientedSimilaritySurface(base_ring)
S.rename(
"StepBilliard(w=[{}], h=[{}])".format(
", ".join(map(str, w)), ", ".join(map(str, h))
)
)
for p in P:
S.add_polygon(p) # get labels 0, ..., n-1
for p in Prev:
S.add_polygon(p) # get labels n, n+1, ..., 2n-1
# reflection gluings
# (gluings between the polygon and its reflection)
S.glue((0, 4), (n, 4))
S.glue((n - 1, 0), (2 * n - 1, 2))
S.glue((n - 1, 1), (2 * n - 1, 1))
S.glue((n - 1, 2), (2 * n - 1, 0))
for i in range(n - 1):
# glue((polygon1, edge1), (polygon2, edge2))
S.glue((i, 0), (n + i, 3))
S.glue((i, 2), (n + i, 1))
S.glue((i, 3), (n + i, 0))
# translation gluings
S.glue((n - 2, 1), (n - 1, 3))
S.glue((2 * n - 2, 2), (2 * n - 1, 3))
for i in range(n - 2):
S.glue((i, 1), (i + 1, 4))
S.glue((n + i, 2), (n + i + 1, 4))
S.set_immutable()
return S
half_translation_surfaces = HalfTranslationSurfaceGenerators()
[docs]
class TranslationSurfaceGenerators:
r"""
Common and less common translation surfaces.
"""
[docs]
@staticmethod
def square_torus(a=1):
r"""
Return flat torus obtained by identification of the opposite sides of a
square.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: T = translation_surfaces.square_torus()
sage: T
Translation Surface in H_1(0) built from a square
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: T in TranslationSurfaces()
True
sage: TestSuite(T).run()
Rational directions are completely periodic::
sage: v = T.tangent_vector(0, (1/33, 1/257), (13,17))
sage: L = v.straight_line_trajectory()
sage: L.flow(13+17)
sage: L.is_closed()
True
TESTS::
sage: TestSuite(T).run()
"""
return TranslationSurfaceGenerators.torus((a, 0), (0, a))
[docs]
@staticmethod
def torus(u, v):
r"""
Return the flat torus obtained as the quotient of the plane by the pair
of vectors ``u`` and ``v``.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: T = translation_surfaces.torus((1, AA(2).sqrt()), (AA(3).sqrt(), 3))
sage: T
Translation Surface in H_1(0) built from a quadrilateral
sage: T.polygon(0)
Polygon(vertices=[(0, 0), (1, 1.414213562373095?), (2.732050807568878?, 4.414213562373095?), (1.732050807568878?, 3)])
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: T in TranslationSurfaces()
True
"""
u = vector(u)
v = vector(v)
field = Sequence([u, v]).universe().base_ring()
if isinstance(field, type):
field = py_scalar_parent(field)
if not field.is_field():
field = field.fraction_field()
s = MutableOrientedSimilaritySurface(field)
p = Polygon(vertices=[(0, 0), u, u + v, v], base_ring=field)
s.add_polygon(p)
s.glue((0, 0), (0, 2))
s.glue((0, 1), (0, 3))
s.set_immutable()
return s
[docs]
@staticmethod
def veech_2n_gon(n):
r"""
The regular 2n-gon with opposite sides identified.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s = translation_surfaces.veech_2n_gon(5)
sage: s
Translation Surface in H_2(1^2) built from a regular decagon
sage: TestSuite(s).run()
"""
p = polygons.regular_ngon(2 * n)
s = MutableOrientedSimilaritySurface(p.base_ring())
s.add_polygon(p)
for i in range(2 * n):
s.glue((0, i), (0, (i + n) % (2 * n)))
s.set_immutable()
return s
[docs]
@staticmethod
def veech_double_n_gon(n):
r"""
A pair of regular n-gons with each edge of one identified to an edge of the other to make a translation surface.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s=translation_surfaces.veech_double_n_gon(5)
sage: s
Translation Surface in H_2(2) built from 2 regular pentagons
sage: TestSuite(s).run()
"""
from sage.matrix.constructor import Matrix
p = polygons.regular_ngon(n)
s = MutableOrientedSimilaritySurface(p.base_ring())
m = Matrix([[-1, 0], [0, -1]])
s.add_polygon(p, label=0)
s.add_polygon(m * p, label=1)
for i in range(n):
s.glue((0, i), (1, i))
s.set_immutable()
return s
[docs]
@staticmethod
def regular_octagon():
r"""
Return the translation surface built from the regular octagon by
identifying opposite sides.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: T = translation_surfaces.regular_octagon()
sage: T
Translation Surface in H_2(2) built from a regular octagon
sage: TestSuite(T).run()
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: T in TranslationSurfaces()
True
"""
return translation_surfaces.veech_2n_gon(4)
[docs]
@staticmethod
def mcmullen_genus2_prototype(w, h, t, e, rel=0, base_ring=None):
r"""
McMullen prototypes in the stratum H(2).
These prototype appear at least in McMullen "Teichmüller curves in genus
two: Discriminant and spin" (2004). The notation from that paper are
quadruple ``(a, b, c, e)`` which translates in our notation as
``w = b``, ``h = c``, ``t = a`` (and ``e = e``).
The associated discriminant is `D = e^2 + 4 wh`.
If ``rel`` is a positive parameter (less than w-lambda) the surface belongs
to the eigenform locus in H(1,1).
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: from surface_dynamics import Stratum
sage: prototypes = {
....: 5: [(1,1,0,-1)],
....: 8: [(1,1,0,-2), (2,1,0,0)],
....: 9: [(2,1,0,-1)],
....: 12: [(1,2,0,-2), (2,1,0,-2), (3,1,0,0)],
....: 13: [(1,1,0,-3), (3,1,0,-1), (3,1,0,1)],
....: 16: [(3,1,0,-2), (4,1,0,0)],
....: 17: [(1,2,0,-3), (2,1,0,-3), (2,2,0,-1), (2,2,1,-1), (4,1,0,-1), (4,1,0,1)],
....: 20: [(1,1,0,-4), (2,2,1,-2), (4,1,0,-2), (4,1,0,2)],
....: 21: [(1,3,0,-3), (3,1,0,-3)],
....: 24: [(1,2,0,-4), (2,1,0,-4), (3,2,0,0)],
....: 25: [(2,2,0,-3), (2,2,1,-3), (3,2,0,-1), (4,1,0,-3)]}
sage: for D in sorted(prototypes): # long time (.5s)
....: for w,h,t,e in prototypes[D]:
....: T = translation_surfaces.mcmullen_genus2_prototype(w,h,t,e)
....: assert T.stratum() == Stratum([2], 1)
....: assert (D.is_square() and T.base_ring() is QQ) or (T.base_ring().polynomial().discriminant() == D)
An example with some relative homology::
sage: U8 = translation_surfaces.mcmullen_genus2_prototype(2,1,0,0,1/4) # discriminant 8
sage: U8
Translation Surface in H_2(1^2) built from a rectangle and a quadrilateral
sage: U12 = translation_surfaces.mcmullen_genus2_prototype(3,1,0,0,3/10) # discriminant 12
sage: U12
Translation Surface in H_2(1^2) built from a rectangle and a quadrilateral
sage: U8.stratum()
H_2(1^2)
sage: U8.base_ring().polynomial().discriminant()
8
sage: U8.j_invariant()
(
[4 0]
(0), (0), [0 2]
)
sage: U12.stratum()
H_2(1^2)
sage: U12.base_ring().polynomial().discriminant()
12
sage: U12.j_invariant()
(
[6 0]
(0), (0), [0 2]
)
"""
w = ZZ(w)
h = ZZ(h)
t = ZZ(t)
e = ZZ(e)
g = w.gcd(h)
if (
w <= 0
or h <= 0
or t < 0
or t >= g
or not g.gcd(t).gcd(e).is_one()
or e + h >= w
):
raise ValueError("invalid parameters")
x = polygen(QQ)
poly = x**2 - e * x - w * h
if poly.is_irreducible():
if base_ring is None:
emb = AA.polynomial_root(poly, RIF(0, w))
K = NumberField(poly, "l", embedding=emb)
λ = K.gen()
else:
K = base_ring
roots = poly.roots(K, multiplicities=False)
if len(roots) != 2:
raise ValueError("invalid base ring")
roots.sort(key=lambda x: x.numerical_approx())
assert roots[0] < 0 and roots[0] > 0
λ = roots[1]
else:
if base_ring is None:
K = QQ
else:
K = base_ring
D = e**2 + 4 * w * h
d = D.sqrt()
λ = (e + d) / 2
try:
rel = K(rel)
except TypeError:
K = get_coercion_model().common_parent(K, parent(rel))
λ = K(λ)
rel = K(rel)
# (lambda,lambda) square on top
# twisted (w,0), (t,h)
s = MutableOrientedSimilaritySurface(K)
if rel:
if rel < 0 or rel > w - λ:
raise ValueError("invalid rel argument")
s.add_polygon(
Polygon(vertices=[(0, 0), (λ, 0), (λ + rel, λ), (rel, λ)], base_ring=K)
)
s.add_polygon(
Polygon(
vertices=[
(0, 0),
(rel, 0),
(rel + λ, 0),
(w, 0),
(w + t, h),
(λ + rel + t, h),
(t + λ, h),
(t, h),
],
base_ring=K,
)
)
s.glue((0, 1), (0, 3))
s.glue((0, 0), (1, 6))
s.glue((0, 2), (1, 1))
s.glue((1, 2), (1, 4))
s.glue((1, 3), (1, 7))
s.glue((1, 0), (1, 5))
else:
s.add_polygon(
Polygon(vertices=[(0, 0), (λ, 0), (λ, λ), (0, λ)], base_ring=K)
)
s.add_polygon(
Polygon(
vertices=[(0, 0), (λ, 0), (w, 0), (w + t, h), (λ + t, h), (t, h)],
base_ring=K,
)
)
s.glue((0, 1), (0, 3))
s.glue((0, 0), (1, 4))
s.glue((0, 2), (1, 0))
s.glue((1, 1), (1, 3))
s.glue((1, 2), (1, 5))
s.set_immutable()
return s
[docs]
@staticmethod
def lanneau_nguyen_genus3_prototype(w, h, t, e):
r"""
Return the Lanneau--Ngyuen prototype in the stratum H(4) with
parameters ``w``, ``h``, ``t``, and ``e``.
The associated discriminant is `e^2 + 8 wh`.
INPUT:
- ``w`` -- a positive integer
- ``h`` -- a positive integer
- ``t`` -- a non-negative integer strictly less than the gcd of ``w``
and ``h``
- ``e`` -- an integer strictly less than ``w - 2h``
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: T = translation_surfaces.lanneau_nguyen_genus3_prototype(2,1,0,-1)
sage: T.stratum()
H_3(4)
REFERENCES:
- Erwan Lanneau, and Duc-Manh Nguyen, "Teichmüller curves generated by
Weierstrass Prym eigenforms in genus 3 and genus 4", Journal of
Topology 7.2, 2014, pp.475-522
"""
from sage.all import gcd
w = ZZ(w)
h = ZZ(h)
t = ZZ(t)
e = ZZ(e)
if not w > 0:
raise ValueError("w must be positive")
if not h > 0:
raise ValueError("h must be positive")
if not e + 2 * h < w:
raise ValueError("e + 2h < w must hold")
if not t >= 0:
raise ValueError("t must be non-negative")
if not t < gcd(w, h):
raise ValueError("t must be smaller than the gcd of w and h")
if not gcd([w, h, t, e]) == 1:
raise ValueError("w, h, t, e must be coprime")
K = QQ
D = K(e**2 + 8 * w * h)
if not D.is_square():
from sage.all import QuadraticField
K = QuadraticField(D)
D = K(D)
d = D.sqrt()
λ = (e + d) / 2
# (λ, λ) square in the middle
# twisted (w, 0), (t, h) on top and bottom
s = MutableOrientedSimilaritySurface(K)
from flatsurf import Polygon
s.add_polygon(
Polygon(
vertices=[(0, 0), (λ, 0), (w, 0), (w + t, h), (λ + t, h), (t, h)],
base_ring=K,
)
)
s.add_polygon(Polygon(vertices=[(0, 0), (λ, 0), (λ, λ), (0, λ)], base_ring=K))
s.add_polygon(
Polygon(
vertices=[
(0, 0),
(w - λ, 0),
(w, 0),
(w + t, h),
(w - λ + t, h),
(t, h),
],
base_ring=K,
)
)
s.glue((0, 0), (2, 3))
s.glue((0, 1), (0, 3))
s.glue((0, 2), (0, 5))
s.glue((0, 4), (1, 0))
s.glue((1, 1), (1, 3))
s.glue((1, 2), (2, 1))
s.glue((2, 0), (2, 4))
s.glue((2, 2), (2, 5))
s.set_immutable()
return s
[docs]
@staticmethod
def lanneau_nguyen_genus4_prototype(w, h, t, e):
r"""
Return the Lanneau--Ngyuen prototype in the stratum H(6) with
parameters ``w``, ``h``, ``t``, and ``e``.
The associated discriminant is `D = e^2 + 4 wh`.
INPUT:
- ``w`` -- a positive integer
- ``h`` -- a positive integer
- ``t`` -- a non-negative integer strictly smaller than the gcd of
``w`` and ``h``
- ``e`` -- a positive integer strictly smaller than `2w - \sqrt{D}`
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: T = translation_surfaces.lanneau_nguyen_genus4_prototype(1,1,0,-2)
sage: T.stratum()
H_4(6)
REFERENCES:
- Erwan Lanneau, and Duc-Manh Nguyen, "Weierstrass Prym eigenforms in
genus four", Journal of the Institute of Mathematics of Jussieu,
19.6, 2020, pp.2045-2085
"""
from sage.all import gcd
w = ZZ(w)
h = ZZ(h)
t = ZZ(t)
e = ZZ(e)
if not w > 0:
raise ValueError("w must be positive")
if not h > 0:
raise ValueError("h must be positive")
if not t >= 0:
raise ValueError("t must be non-negative")
if not t < gcd(w, h):
raise ValueError("t must be smaller than the gcd of w and h")
if not gcd([w, h, t, e]) == 1:
raise ValueError("w, h, t, e must be coprime")
K = QQ
D = K(e**2 + 4 * w * h)
if not D.is_square():
from sage.all import QuadraticField
K = QuadraticField(D)
D = K(D)
d = D.sqrt()
λ = (e + d) / 2
if not λ < w:
raise ValueError("λ must be smaller than w")
if λ == w / 2:
raise ValueError("λ and w/2 must be distinct")
# (λ/2, λ/2) squares on top and bottom
# twisted (w/2, 0), (t/2, h/2) in the middle
s = MutableOrientedSimilaritySurface(K)
from flatsurf import Polygon
s.add_polygon(
Polygon(
vertices=[(0, 0), (λ / 2, 0), (λ / 2, λ / 2), (0, λ / 2)], base_ring=K
)
)
s.add_polygon(
Polygon(
vertices=[
(0, 0),
(w / 2 - λ, 0),
(w / 2 - λ / 2, 0),
(w / 2, 0),
(w / 2 + t / 2, h / 2),
(w / 2 - λ + t / 2, h / 2),
(t / 2, h / 2),
],
base_ring=K,
)
)
s.add_polygon(
Polygon(
vertices=[
(0, 0),
(λ, 0),
(w / 2, 0),
(w / 2 + t / 2, h / 2),
(λ + t / 2, h / 2),
(λ / 2 + t / 2, h / 2),
(t / 2, h / 2),
],
base_ring=K,
)
)
s.add_polygon(
Polygon(
vertices=[(0, 0), (λ / 2, 0), (λ / 2, λ / 2), (0, λ / 2)], base_ring=K
)
)
s.glue((0, 0), (2, 4))
s.glue((0, 1), (0, 3))
s.glue((0, 2), (1, 2))
s.glue((1, 0), (1, 5))
s.glue((1, 1), (3, 2))
s.glue((1, 3), (1, 6))
s.glue((1, 4), (2, 0))
s.glue((2, 1), (2, 3))
s.glue((2, 2), (2, 6))
s.glue((2, 5), (3, 0))
s.glue((3, 1), (3, 3))
s.set_immutable()
return s
[docs]
@staticmethod
def mcmullen_L(l1, l2, l3, l4):
r"""
Return McMullen's L shaped surface with parameters l1, l2, l3, l4.
Polygon labels and lengths are marked below::
+-----+
| |
| 1 |l1
| |
| | l4
+-----+---------+
| | |
| 0 | 2 |l2
| | |
+-----+---------+
l3
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s = translation_surfaces.mcmullen_L(1,1,1,1)
sage: s
Translation Surface in H_2(2) built from 3 squares
sage: TestSuite(s).run()
TESTS::
sage: from flatsurf import translation_surfaces
sage: L = translation_surfaces.mcmullen_L(1r, 1r, 1r, 1r)
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: L in TranslationSurfaces()
True
"""
field = Sequence([l1, l2, l3, l4]).universe()
if isinstance(field, type):
field = py_scalar_parent(field)
if not field.is_field():
field = field.fraction_field()
s = MutableOrientedSimilaritySurface(field)
s.add_polygon(
Polygon(edges=[(l3, 0), (0, l2), (-l3, 0), (0, -l2)], base_ring=field)
)
s.add_polygon(
Polygon(edges=[(l3, 0), (0, l1), (-l3, 0), (0, -l1)], base_ring=field)
)
s.add_polygon(
Polygon(edges=[(l4, 0), (0, l2), (-l4, 0), (0, -l2)], base_ring=field)
)
s.glue((0, 0), (1, 2))
s.glue((0, 1), (2, 3))
s.glue((0, 2), (1, 0))
s.glue((0, 3), (2, 1))
s.glue((1, 1), (1, 3))
s.glue((2, 0), (2, 2))
s.set_immutable()
return s
[docs]
@staticmethod
def ward(n):
r"""
Return the surface formed by gluing a regular 2n-gon to two regular n-gons.
These surfaces have Veech's lattice property due to work of Ward.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s = translation_surfaces.ward(3)
sage: s
Translation Surface in H_1(0^3) built from 2 equilateral triangles and a regular hexagon
sage: TestSuite(s).run()
sage: s = translation_surfaces.ward(7)
sage: s
Translation Surface in H_6(10) built from 2 regular heptagons and a regular tetradecagon
sage: TestSuite(s).run()
"""
if n < 3:
raise ValueError
o = ZZ_2 * polygons.regular_ngon(2 * n)
p1 = Polygon(edges=[o.edge((2 * i + n) % (2 * n)) for i in range(n)])
p2 = Polygon(edges=[o.edge((2 * i + n + 1) % (2 * n)) for i in range(n)])
s = MutableOrientedSimilaritySurface(o.base_ring())
s.add_polygon(o)
s.add_polygon(p1)
s.add_polygon(p2)
for i in range(n):
s.glue((1, i), (0, 2 * i))
s.glue((2, i), (0, 2 * i + 1))
s.set_immutable()
return s
[docs]
@staticmethod
def octagon_and_squares():
r"""
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: os = translation_surfaces.octagon_and_squares()
sage: os
Translation Surface in H_3(4) built from 2 squares and a regular octagon
sage: TestSuite(os).run()
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: os in TranslationSurfaces()
True
"""
return translation_surfaces.ward(4)
[docs]
@staticmethod
def cathedral(a, b):
r"""
Return the cathedral surface with parameters ``a`` and ``b``.
For any parameter ``a`` and ``b``, the cathedral surface belongs to the
so-called Gothic locus described in McMullen, Mukamel, Wright "Cubic
curves and totally geodesic subvarieties of moduli space" (2017)::
1
<--->
/\ 2a
/ \ +------+
a b| | a / \
+----+ +---+ +
| | | | |
1| P0 |P1 |P2 | P3 |
| | | | |
+----+ +---+ +
b| | \ /
\ / +------+
\/
If a and b satisfies
.. MATH::
a = x + y \sqrt(d) \qquad b = -3x -3/2 + 3y \sqrt(d)
for some rational x,y and d >= 0 then it is a Teichmüller curve.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: C = translation_surfaces.cathedral(1,2)
sage: C
Translation Surface in H_4(2^3) built from 2 squares, a hexagon with 4 marked vertices and an octagon
sage: TestSuite(C).run()
sage: from pyexactreal import ExactReals # optional: pyexactreal
sage: K = QuadraticField(5, embedding=AA(5).sqrt())
sage: R = ExactReals(K) # optional: pyexactreal
sage: C = translation_surfaces.cathedral(K.gen(), R.random_element([0.1, 0.2])) # optional: pyexactreal
sage: C # optional: pyexactreal
Translation Surface in H_4(2^3) built from 2 rectangles, a hexagon with 4 marked vertices and an octagon
sage: C.stratum() # optional: pyexactreal
H_4(2^3)
sage: TestSuite(C).run() # long time (6s), optional: pyexactreal
"""
ring = Sequence([a, b]).universe()
if isinstance(ring, type):
ring = py_scalar_parent(ring)
if not ring.has_coerce_map_from(QQ):
ring = ring.fraction_field()
a = ring(a)
b = ring(b)
s = MutableOrientedSimilaritySurface(ring)
half = QQ((1, 2))
p0 = Polygon(base_ring=ring, vertices=[(0, 0), (a, 0), (a, 1), (0, 1)])
p1 = Polygon(
base_ring=ring,
vertices=[
(a, 0),
(a, -b),
(a + half, -b - half),
(a + 1, -b),
(a + 1, 0),
(a + 1, 1),
(a + 1, b + 1),
(a + half, b + 1 + half),
(a, b + 1),
(a, 1),
],
)
p2 = Polygon(
base_ring=ring,
vertices=[(a + 1, 0), (2 * a + 1, 0), (2 * a + 1, 1), (a + 1, 1)],
)
p3 = Polygon(
base_ring=ring,
vertices=[
(2 * a + 1, 0),
(2 * a + 1 + half, -half),
(4 * a + 1 + half, -half),
(4 * a + 2, 0),
(4 * a + 2, 1),
(4 * a + 1 + half, 1 + half),
(2 * a + 1 + half, 1 + half),
(2 * a + 1, 1),
],
)
s.add_polygon(p0)
s.add_polygon(p1)
s.add_polygon(p2)
s.add_polygon(p3)
s.glue((0, 0), (0, 2))
s.glue((0, 1), (1, 9))
s.glue((0, 3), (3, 3))
s.glue((1, 0), (1, 3))
s.glue((1, 1), (3, 4))
s.glue((1, 2), (3, 6))
s.glue((1, 4), (2, 3))
s.glue((1, 5), (1, 8))
s.glue((1, 6), (3, 0))
s.glue((1, 7), (3, 2))
s.glue((2, 0), (2, 2))
s.glue((2, 1), (3, 7))
s.glue((3, 1), (3, 5))
s.set_immutable()
return s
[docs]
@staticmethod
def arnoux_yoccoz(genus):
r"""
Construct the Arnoux-Yoccoz surface of genus 3 or greater.
This presentation of the surface follows Section 2.3 of
Joshua P. Bowman's paper "The Complete Family of Arnoux-Yoccoz
Surfaces."
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s = translation_surfaces.arnoux_yoccoz(4)
sage: s
Translation Surface in H_4(3^2) built from 16 triangles
sage: TestSuite(s).run()
sage: s.is_delaunay_decomposed()
True
sage: s = s.canonicalize()
sage: s
Translation Surface in H_4(3^2) built from 16 triangles
sage: field=s.base_ring()
sage: a = field.gen()
sage: from sage.matrix.constructor import Matrix
sage: m = Matrix([[a,0],[0,~a]])
sage: ss = m*s
sage: ss = ss.canonicalize()
sage: s.cmp(ss) == 0
True
The Arnoux-Yoccoz pseudo-Anosov are known to have (minimal) invariant
foliations with SAF=0::
sage: S3 = translation_surfaces.arnoux_yoccoz(3)
sage: Jxx, Jyy, Jxy = S3.j_invariant()
sage: Jxx.is_zero() and Jyy.is_zero()
True
sage: Jxy
[ 0 2 0]
[ 2 -2 0]
[ 0 0 2]
sage: S4 = translation_surfaces.arnoux_yoccoz(4)
sage: Jxx, Jyy, Jxy = S4.j_invariant()
sage: Jxx.is_zero() and Jyy.is_zero()
True
sage: Jxy
[ 0 2 0 0]
[ 2 -2 0 0]
[ 0 0 2 2]
[ 0 0 2 0]
"""
g = ZZ(genus)
if g < 3:
raise ValueError
x = polygen(AA)
p = sum([x**i for i in range(1, g + 1)]) - 1
cp = AA.common_polynomial(p)
alpha_AA = AA.polynomial_root(cp, RIF(1 / 2, 1))
field = NumberField(alpha_AA.minpoly(), "alpha", embedding=alpha_AA)
a = field.gen()
V = VectorSpace(field, 2)
p = [None for i in range(g + 1)]
q = [None for i in range(g + 1)]
p[0] = V(((1 - a**g) / 2, a**2 / (1 - a)))
q[0] = V((-(a**g) / 2, a))
p[1] = V((-(a ** (g - 1) + a**g) / 2, (a - a**2 + a**3) / (1 - a)))
p[g] = V((1 + (a - a**g) / 2, (3 * a - 1 - a**2) / (1 - a)))
for i in range(2, g):
p[i] = V(((a - a**i) / (1 - a), a / (1 - a)))
for i in range(1, g + 1):
q[i] = V(
(
(2 * a - a**i - a ** (i + 1)) / (2 * (1 - a)),
(a - a ** (g - i + 2)) / (1 - a),
)
)
s = MutableOrientedSimilaritySurface(field)
T = [None] * (2 * g + 1)
Tp = [None] * (2 * g + 1)
from sage.matrix.constructor import Matrix
m = Matrix([[1, 0], [0, -1]])
for i in range(1, g + 1):
# T_i is (P_0,Q_i,Q_{i-1})
T[i] = s.add_polygon(
Polygon(
base_ring=field,
edges=[q[i] - p[0], q[i - 1] - q[i], p[0] - q[i - 1]],
)
)
# T_{g+i} is (P_i,Q_{i-1},Q_{i})
T[g + i] = s.add_polygon(
Polygon(
base_ring=field,
edges=[q[i - 1] - p[i], q[i] - q[i - 1], p[i] - q[i]],
)
)
# T'_i is (P'_0,Q'_{i-1},Q'_i)
Tp[i] = s.add_polygon(m * s.polygon(T[i]))
# T'_{g+i} is (P'_i,Q'_i, Q'_{i-1})
Tp[g + i] = s.add_polygon(m * s.polygon(T[g + i]))
for i in range(1, g):
s.glue((T[i], 0), (T[i + 1], 2))
s.glue((Tp[i], 2), (Tp[i + 1], 0))
for i in range(1, g + 1):
s.glue((T[i], 1), (T[g + i], 1))
s.glue((Tp[i], 1), (Tp[g + i], 1))
# P 0 Q 0 is paired with P' 0 Q' 0, ...
s.glue((T[1], 2), (Tp[g], 2))
s.glue((Tp[1], 0), (T[g], 0))
# P1Q1 is paired with P'_g Q_{g-1}
s.glue((T[g + 1], 2), (Tp[2 * g], 2))
s.glue((Tp[g + 1], 0), (T[2 * g], 0))
# P1Q0 is paired with P_{g-1} Q_{g-1}
s.glue((T[g + 1], 0), (T[2 * g - 1], 2))
s.glue((Tp[g + 1], 2), (Tp[2 * g - 1], 0))
# PgQg is paired with Q1P2
s.glue((T[2 * g], 2), (T[g + 2], 0))
s.glue((Tp[2 * g], 0), (Tp[g + 2], 2))
for i in range(2, g - 1):
# PiQi is paired with Q'_i P'_{i+1}
s.glue((T[g + i], 2), (Tp[g + i + 1], 2))
s.glue((Tp[g + i], 0), (T[g + i + 1], 0))
s.set_immutable()
return s
[docs]
@staticmethod
def from_flipper(h):
r"""
Build a (half-)translation surface from a flipper pseudo-Anosov.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: import flipper # optional - flipper
A torus example::
sage: t1 = (0r,1r,2r) # optional - flipper
sage: t2 = (~0r,~1r,~2r) # optional - flipper
sage: T = flipper.create_triangulation([t1,t2]) # optional - flipper
sage: L1 = T.lamination([1r,0r,1r]) # optional - flipper
sage: L2 = T.lamination([0r,1r,1r]) # optional - flipper
sage: h1 = L1.encode_twist() # optional - flipper
sage: h2 = L2.encode_twist() # optional - flipper
sage: h = h1*h2^(-1r) # optional - flipper
sage: f = h.flat_structure() # optional - flipper
sage: ts = translation_surfaces.from_flipper(h) # optional - flipper
sage: ts # optional - flipper; computation of the stratum fails here, see #227
Half-Translation Surface built from 2 triangles
sage: TestSuite(ts).run() # optional - flipper
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces # optional: flipper
sage: ts in HalfTranslationSurfaces() # optional: flipper
True
A non-orientable example::
sage: T = flipper.load('SB_4') # optional - flipper
sage: h = T.mapping_class('s_0S_1s_2S_3s_1S_2') # optional - flipper
sage: h.is_pseudo_anosov() # optional - flipper
True
sage: S = translation_surfaces.from_flipper(h) # optional - flipper
sage: TestSuite(S).run() # optional - flipper
sage: len(S.polygons()) # optional - flipper
4
sage: from flatsurf.geometry.similarity_surface_generators import flipper_nf_element_to_sage
sage: a = flipper_nf_element_to_sage(h.dilatation()) # optional - flipper
"""
f = h.flat_structure()
x = next(iter(f.edge_vectors.values())).x
K = flipper_nf_to_sage(x.field)
V = VectorSpace(K, 2)
edge_vectors = {
i: V(
(flipper_nf_element_to_sage(e.x, K), flipper_nf_element_to_sage(e.y, K))
)
for i, e in f.edge_vectors.items()
}
to_polygon_number = {
k: (i, j) for i, t in enumerate(f.triangulation) for j, k in enumerate(t)
}
from flatsurf import MutableOrientedSimilaritySurface
S = MutableOrientedSimilaritySurface(K)
for i, t in enumerate(f.triangulation):
try:
poly = Polygon(base_ring=K, edges=[edge_vectors[i] for i in tuple(t)])
except ValueError:
raise ValueError(
"t = {}, edges = {}".format(
t, [edge_vectors[i].n(digits=6) for i in t]
)
)
S.add_polygon(poly)
for i, t in enumerate(f.triangulation):
for j, k in enumerate(t):
S.glue((i, j), to_polygon_number[~k])
S.set_immutable()
return S
[docs]
@staticmethod
def origami(r, u, rr=None, uu=None, domain=None):
r"""
Return the origami defined by the permutations ``r`` and ``u``.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = SymmetricGroup(3)
sage: r = S('(1,2)')
sage: u = S('(1,3)')
sage: o = translation_surfaces.origami(r,u)
sage: o
Origami defined by r=(1,2) and u=(1,3)
sage: o.stratum()
H_2(2)
sage: TestSuite(o).run()
"""
return Origami(r, u, rr, uu, domain)
[docs]
@staticmethod
def infinite_staircase():
r"""
Return the infinite staircase built as an origami.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.infinite_staircase()
sage: S
The infinite staircase
sage: TestSuite(S).run()
"""
return TranslationSurfaceGenerators._InfiniteStaircase()
class _InfiniteStaircase(Origami):
def __init__(self):
super().__init__(
self._vertical,
self._horizontal,
self._vertical,
self._horizontal,
domain=ZZ,
root=ZZ(0),
)
def is_compact(self):
return False
def _vertical(self, x):
if x % 2:
return x + 1
return x - 1
def _horizontal(self, x):
if x % 2:
return x - 1
return x + 1
def _position_function(self, n):
from flatsurf.geometry.similarity import SimilarityGroup
SG = SimilarityGroup(QQ)
if n % 2 == 0:
return SG((n // 2, n // 2))
else:
return SG((n // 2, n // 2 + 1))
def __repr__(self):
return "The infinite staircase"
def __hash__(self):
return 1337
def __eq__(self, other):
r"""
Return whether this surface is indistinguishable from ``other``.
See :meth:`SimilaritySurfaces.FiniteType._test_eq_surface` for details
on this notion of equality.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.infinite_staircase()
sage: S == S
True
"""
return isinstance(other, TranslationSurfaceGenerators._InfiniteStaircase)
def graphical_surface(self, *args, **kwargs):
default_position_function = kwargs.pop(
"default_position_function", self._position_function
)
graphical_surface = super().graphical_surface(
*args, default_position_function=default_position_function, **kwargs
)
graphical_surface.make_all_visible(limit=10)
return graphical_surface
def is_triangulated(self, limit=None):
r"""
Return whether this surface is triangulated, which it is not.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.infinite_staircase()
sage: S.is_triangulated()
False
"""
if limit is not None:
import warnings
warnings.warn(
"limit has been deprecated as a keyword argument for is_triangulated() and will be removed from a future version of sage-flatsurf; "
"if you rely on this check, you can try to run this method on MutableOrientedSimilaritySurface.from_surface(surface, labels=surface.labels()[:limit])"
)
return False
def is_delaunay_triangulated(self, limit=None):
r"""
Return whether this surface is Delaunay triangulated, which it is not.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.infinite_staircase()
sage: S.is_delaunay_triangulated()
False
"""
if limit is not None:
import warnings
warnings.warn(
"limit has been deprecated as a keyword argument for is_delaunay_triangulated() and will be removed from a future version of sage-flatsurf; "
"if you rely on this check, you can try to run this method on MutableOrientedSimilaritySurface.from_surface(surface, labels=surface.labels()[:limit])"
)
return False
def is_delaunay_decomposed(self, limit=None):
r"""
Return whether this surface is made from Delaunay cells.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.infinite_staircase()
sage: S.is_delaunay_decomposed()
True
"""
if limit is not None:
import warnings
warnings.warn(
"limit has been deprecated as a keyword argument for is_delaunay_decomposed() and will be removed from a future version of sage-flatsurf; "
"if you rely on this check, you can try to run this method on MutableOrientedSimilaritySurface.from_surface(surface, labels=surface.labels()[:limit])"
)
return True
[docs]
@staticmethod
def t_fractal(w=ZZ_1, r=ZZ_2, h1=ZZ_1, h2=ZZ_1):
r"""
Return the T-fractal with parameters ``w``, ``r``, ``h1``, ``h2``.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: tf = translation_surfaces.t_fractal() # long time (.4s)
sage: tf # long time (see above)
The T-fractal surface with parameters w=1, r=2, h1=1, h2=1
sage: TestSuite(tf).run() # long time (see above)
"""
return tfractal_surface(w, r, h1, h2)
[docs]
@staticmethod
def e_infinity_surface(lambda_squared=None, field=None):
r"""
The translation surface based on the `E_\infinity` graph.
The biparite graph is shown below, with edges numbered::
0 1 2 -2 3 -3 4 -4
*---o---*---o---*---o---*---o---*...
|
|-1
o
Here, black vertices are colored ``*``, and white ``o``.
Black nodes represent vertical cylinders and white nodes
represent horizontal cylinders.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: s = translation_surfaces.e_infinity_surface()
sage: TestSuite(s).run() # long time (1s)
"""
return EInfinitySurface(lambda_squared, field)
[docs]
@staticmethod
def chamanara(alpha):
r"""
Return the Chamanara surface with parameter ``alpha``.
EXAMPLES::
sage: from flatsurf import translation_surfaces
sage: C = translation_surfaces.chamanara(1/2)
sage: C
Minimal Translation Cover of Chamanara surface with parameter 1/2
TESTS::
sage: TestSuite(C).run()
sage: from flatsurf.geometry.categories import TranslationSurfaces
sage: C in TranslationSurfaces()
True
"""
from .chamanara import chamanara_surface
return chamanara_surface(alpha)
translation_surfaces = TranslationSurfaceGenerators()