Source code for flatsurf.geometry.pyflatsurf.conversion

r"""
Conversion of sage-flatsurf objects to libflatsurf/pyflatsurf and vice versa.

Ideally, there should be no need to call the functionality in this module
directly. Interaction with libflatsurf/pyflatsurf should be handled
transparently by the sage-flatsurf objects. Even for authors of sage-flatsurf
there should essentially never be a need to use this module directly since
objects should provide a ``pyflatsurf()`` method that returns a
:class:`Conversion` to libflatsurf/pyflatsurf.

EXAMPLES::

    sage: from flatsurf import translation_surfaces
    sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion  # random output due to deprecation warnings in cppyy
    sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain()
    sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S)  # optional: pyflatsurf
    sage: conversion  # optional: pyflatsurf
    Conversion from Triangulation of Translation Surface in H_2(2) built from 2 regular pentagons to FlatTriangulationCombinatorial(...) with vectors ...

"""

# ********************************************************************
#  This file is part of sage-flatsurf.
#
#        Copyright (C)      2019 Vincent Delecroix
#                      2019-2024 Julian Rüth
#
#  sage-flatsurf is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 2 of the License, or
#  (at your option) any later version.
#
#  sage-flatsurf is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
# ********************************************************************

from sage.misc.cachefunc import cached_method

from flatsurf.features import pyflatsurf_feature, pyeantic_feature


if pyeantic_feature.is_present():
    pyeantic_feature.fix_unwrap_intrusive_ptr()


[docs] class Conversion: r""" Generic base class for a conversion from sage-flatsurf to pyflatsurf. INPUT: - ``domain`` -- the domain of this conversion, can be ``None``, when the domain cannot be represented that easily with a sage-flatsurf object. - ``codomain`` -- the codomain of this conversion, can be ``None``, when the codomain cannot be represented that easily with libflatsurf/pyflatsurf object. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf TESTS:: sage: from flatsurf.geometry.pyflatsurf.conversion import Conversion sage: isinstance(conversion, Conversion) # optional: pyflatsurf True """
[docs] def __init__(self, domain, codomain): self._domain = domain self._codomain = codomain
[docs] @classmethod def to_pyflatsurf(cls, domain, codomain=None): r""" Return a :class:`Conversion` from ``domain`` to the ``codomain``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf """ raise NotImplementedError( "this converter does not implement conversion to pyflatsurf yet" )
[docs] @classmethod def from_pyflatsurf(cls, codomain, domain=None): r""" Return a :class:`Conversion` from ``domain`` to ``codomain``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: FlatTriangulationConversion.from_pyflatsurf(conversion.codomain()) # optional: pyflatsurf Conversion from ... """ raise NotImplementedError( "this converter does not implement conversion from pyflatsurf yet" )
[docs] @classmethod def to_pyflatsurf_from_elements(cls, elements, codomain=None): r""" Return a :class:`Conversion` that converts the sage-flatsurf ``elements`` to ``codomain``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf_from_elements([1, 2, 3]) # optional: gmpxxyy # random output due to cppyy deprecation warnings sage: conversion # optional: gmpxxyy Conversion from Integer Ring to __gmp_expr<__mpz_struct[1],__mpz_struct[1]> """ from sage.all import Sequence return cls.to_pyflatsurf( domain=Sequence(elements).universe(), codomain=codomain )
[docs] def domain(self): r""" Return the domain of this conversion, a sage-flatsurf object. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion.domain() # optional: pyflatsurf Triangulation of Translation Surface in H_2(2) built from 2 regular pentagons """ if self._domain is not None: return self._domain raise NotImplementedError( f"{type(self).__name__} does not implement domain() yet" )
[docs] def codomain(self): r""" Return the codomain of this conversion, a pyflatsurf object. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion.codomain() # optional: pyflatsurf FlatTriangulationCombinatorial(vertices = ...) with vectors {...} """ if self._codomain is not None: return self._codomain raise NotImplementedError( f"{type(self).__name__} does not implement codomain() yet" )
[docs] def __call__(self, x): r""" Return the conversion at an element of :meth:`domain` and return the corresponding pyflatsurf object. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: conversion(p) # optional: pyflatsurf ((-1/4*a^2 + 1/2*a + 1/2 ~ 0.54654802), (1/4*a^2 - 3/4 ~ 0.15450850), (1/4 ~ 0.25000000)) in (-6, 8, 9) """ raise NotImplementedError( f"{type(self).__name__} does not implement a mapping of elements yet" )
[docs] def section(self, y): r""" Return the conversion of an element of :meth:`codomain` and return the corresponding sage-flatsurf object. This is the inverse of :meth:`__call__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: q = conversion(p) # optional: pyflatsurf sage: conversion.section(q) # optional: pyflatsurf Point (0, 1/2) of polygon (0, 2) """ raise NotImplementedError( f"{type(self).__name__} does not implement a section yet" )
[docs] def __repr__(self): r""" Return a printable representation of this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf Conversion from Triangulation of Translation Surface in H_2(2) built from 2 regular pentagons to FlatTriangulationCombinatorial(...) with vectors ... """ codomain = self.codomain() if hasattr(codomain, "__cpp_name__"): codomain = codomain.__cpp_name__ return f"Conversion from {self.domain()} to {codomain}"
[docs] def __eq__(self, other): r""" Return whether this conversion is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion1 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion2 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion1 == conversion2 # optional: pyflatsurf True """ raise NotImplementedError( f"this {type(self).__name__} does not implement == yet" )
[docs] def __hash__(self): r""" Return a hash value for this conversion that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion1 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion2 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: hash(conversion1) == hash(conversion2) # optional: pyflatsurf Traceback (most recent call last): ... TypeError: unhashable type: 'FlatTriangulationConversion' """ raise NotImplementedError( f"this {type(self).__name__} does not implement hashing yet" )
[docs] class RingConversion(Conversion): r""" A conversion between a SageMath ring and a C/C++ ring. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf_from_elements([1, 2, 3]) # optional: gmpxxyy TESTS:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: isinstance(conversion, RingConversion) # optional: gmpxxyy True """ @staticmethod def _ring_conversions(): r""" Return the available ring conversion types. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversions = RingConversion._ring_conversions() sage: list(conversions) # random output, depends on the installed packages [<class 'flatsurf.geometry.pyflatsurf.conversion.RingConversion_eantic'>] """ from flatsurf.features import ( pyeantic_feature, pyexactreal_feature, gmpxxyy_feature, ) if gmpxxyy_feature.is_present(): yield RingConversion_gmp yield RingConversion_int if pyeantic_feature.is_present(): yield RingConversion_eantic yield RingConversion_algebraic if pyexactreal_feature.is_present(): yield RingConversion_exactreal @classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Return a conversion from ``domain`` to ``codomain``. Return ``None`` if this conversion cannot handle this ``domain``/``codomain`` combination. At least one of ``domain`` and ``codomain`` must not be ``None``. INPUT: - ``domain`` -- a SageMath ring (default: ``None``) - ``codomain`` -- a ring that pyflatsurf understands (default: ``None``) EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_eantic sage: RingConversion_eantic._create_conversion(QuadraticField(2)) # optional: pyeantic Conversion from Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? to NumberField(a^2 - 2, [...]) """ raise NotImplementedError( f"{cls.__name__} does not implement _create_conversion() yet" ) @classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Given elements from pyflatsurf, deduce which pyflatsurf ring they live in. Return ``None`` if no (single) conversion can handle these elements. INPUT: - ``elements`` -- any sequence of objects that pyflatsurf understands EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion, RingConversion_eantic sage: conversion = RingConversion.to_pyflatsurf(QuadraticField(2)) # optional: pyeantic sage: element = conversion.codomain().gen() # optional: pyeantic sage: RingConversion_eantic._deduce_codomain_from_codomain_elements([element]) # optional: pyeantic NumberField(a^2 - 2, [...]) """ raise NotImplementedError( f"{cls.__name__} does not implement _deduce_codomain_from_codomain_elements() yet" ) @classmethod def _deduce_codomain_from_domain_elements(cls, elements): r""" Given elements from sage-flatsurf, deduce which pyflatsurf ring they live in. Return ``None`` if no (single) conversion can handle these elements. INPUT: - ``elements`` -- any sequence of objects that sage-flatsurf understands EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion, RingConversion_eantic sage: K.<a> = QuadraticField(2) sage: RingConversion_eantic._deduce_codomain_from_domain_elements([a]) # optional: pyeantic NumberField(a^2 - 2, [...]) """ from sage.all import Sequence conversion = cls._create_conversion(domain=Sequence(elements).universe()) if conversion is None: return None return conversion.codomain()
[docs] @classmethod def to_pyflatsurf(cls, domain, codomain=None): r""" Return a :class:`RingConversion` that converts the SageMath ring ``domain`` to something that libflatsurf/pyflatsurf can understand. INPUT: - ``domain`` -- a ring - ``codomain`` -- a C/C++ type or ``None`` (default: ``None``); if ``None``, the corresponding type is constructed. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: RingConversion.to_pyflatsurf(QQ) # optional: gmpxxyy Conversion from Rational Field to __gmp_expr<__mpq_struct[1],__mpq_struct[1]> """ for conversion_type in RingConversion._ring_conversions(): conversion = conversion_type._create_conversion( domain=domain, codomain=codomain ) if conversion is not None: return conversion raise NotImplementedError( f"cannot determine pyflatsurf ring corresponding to {domain} yet" )
[docs] @classmethod def from_pyflatsurf_from_flat_triangulation(cls, flat_triangulation, domain=None): r""" Return a :class:`RingConversion` that can map ``domain`` to the ring over which ``flat_triangulation`` is defined. INPUT: - ``flat_triangulation`` -- a libflatsurf ``FlatTriangulation`` - ``domain`` -- a SageMath ring, or ``None`` (default: ``None``); if ``None``, the ring is determined automatically. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion, RingConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: flat_triangulation = FlatTriangulationConversion.to_pyflatsurf(S).codomain() # optional: pyflatsurf sage: conversion = RingConversion.from_pyflatsurf_from_flat_triangulation(flat_triangulation) # optional: pyflatsurf Note that this conversion does not roundtrip back to the same SageMath ring. An e-antic ring only has a single variable name but a SageMath number field has a variable name and a (potentially different) variable name in the defining polynomial:: sage: conversion.domain() is S.base_ring() # optional: pyflatsurf False sage: conversion.domain() # optional: pyflatsurf Number Field in a with defining polynomial x^4 - 5*x^2 + 5 with a = 1.902113032590308? sage: S.base_ring() Number Field in a with defining polynomial y^4 - 5*y^2 + 5 with a = 1.902113032590308? We can explicitly specify the domain to create the same conversion again:: sage: conversion = RingConversion.from_pyflatsurf_from_flat_triangulation(flat_triangulation, domain=S.base_ring()) # optional: pyflatsurf sage: conversion.domain() is S.base_ring() # optional: pyflatsurf True """ return cls.from_pyflatsurf_from_elements( [ flat_triangulation.fromHalfEdge(he).x() for he in flat_triangulation.halfEdges() ] + [ flat_triangulation.fromHalfEdge(he).y() for he in flat_triangulation.halfEdges() ], domain=domain, )
[docs] @classmethod def from_pyflatsurf_from_elements(cls, elements, domain=None): r""" Return a :class:`RingConversion` that can map ``domain`` to the ring of ``elements``. INPUT: - ``elements`` -- a sequence of ring elements that libflatsurf/pyflatsurf understands - ``domain`` -- a SageMath ring, or ``None`` (default: ``None``); if ``None``, the ring is determined automatically. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: import gmpxxyy # optional: gmpxxyy sage: conversion = RingConversion.from_pyflatsurf_from_elements([gmpxxyy.mpz()]) # optional: gmpxxyy """ for conversion_type in RingConversion._ring_conversions(): codomain = conversion_type._deduce_codomain_from_codomain_elements(elements) if codomain is None: continue conversion = conversion_type._create_conversion( domain=domain, codomain=codomain ) if conversion is not None: return conversion raise NotImplementedError( f"cannot determine a SageMath ring for {elements} yet" )
[docs] @classmethod def to_pyflatsurf_from_elements(cls, elements, codomain=None): r""" Return a :class:`RingConversion` than can map from the ``elements`` to the ``codomain``. INPUT: - ``elements`` -- a sequence of SageMath ring elements - ``codomain`` -- a libflatsurf parent ring or ``None`` (default: ``None``); if ``None``, the ring is determined automatically. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: import cppyy # optional: gmpxxyy sage: conversion = RingConversion.to_pyflatsurf_from_elements([1]) # optional: gmpxxyy """ from sage.all import Sequence for conversion_type in RingConversion._ring_conversions(): deduced_codomain = codomain if deduced_codomain is None: deduced_codomain = ( conversion_type._deduce_codomain_from_domain_elements(elements) ) if deduced_codomain is None: continue conversion = conversion_type._create_conversion( domain=Sequence(elements).universe(), codomain=deduced_codomain ) if conversion is not None: return conversion raise NotImplementedError( f"cannot determine a pyflatsurf ring for {elements} yet" )
[docs] @classmethod def from_pyflatsurf(cls, codomain, domain=None): r""" Return a :class:`RingConversion` that maps ``domain`` to ``codomain``. INPUT: - ``codomain`` -- a libflatsurf/pyflatsurf type or ring - ``domain`` -- a SageMath ring, or ``None`` (default: ``None``); if ``None``, the ring is determined automatically. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(QQ) # optional: gmpxxyy sage: RingConversion.from_pyflatsurf(conversion.codomain()) # optional: gmpxxyy Conversion from Rational Field to __gmp_expr<__mpq_struct[1],__mpq_struct[1]> """ for conversion_type in RingConversion._ring_conversions(): conversion = conversion_type._create_conversion( domain=domain, codomain=codomain ) if conversion is not None: return conversion raise NotImplementedError( f"cannot determine pyflatsurf ring corresponding to {codomain} yet" )
def _vectors(self): r""" Return the pyflatsurf ``Vectors`` parent over the codomain of this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(QQ) # optional: pyflatsurf sage: conversion._vectors() # optional: pyflatsurf Flatsurf Vectors over Rational Field """ from pyflatsurf.vector import Vectors return Vectors(self.codomain())
[docs] class RingConversion_eantic(RingConversion): r""" A conversion from a SageMath number field to an e-antic real embedded number field. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(domain=QuadraticField(2)) # optional: pyeantic sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_eantic sage: isinstance(conversion, RingConversion_eantic) # optional: pyeantic True """ @classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Implements :meth:`RingConversion._create_conversion`. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_eantic sage: RingConversion_eantic._create_conversion(domain=QuadraticField(3)) # optional: pyeantic Conversion from Number Field in a with defining polynomial x^2 - 3 with a = 1.732050807568878? to NumberField(a^2 - 3, [...]) """ if domain is None and codomain is None: raise ValueError("at least one of domain and codomain must be set") if domain is None: from pyeantic import RealEmbeddedNumberField renf = RealEmbeddedNumberField(codomain) domain = renf.number_field from sage.all import NumberFields, QQ, RR if domain not in NumberFields(): return None if domain is QQ: # GMP should handle the rationals return None if not domain.embeddings(RR): raise NotImplementedError( "cannot determine pyflatsurf ring for not real-embedded number fields yet" ) if not domain.is_absolute(): raise NotImplementedError( "cannot determine pyflatsurf ring for a relative number field since there are no relative fields in e-antic yet" ) if codomain is None: from pyeantic import RealEmbeddedNumberField renf = RealEmbeddedNumberField(domain) import pyeantic.cppyy_eantic codomain = pyeantic.cppyy_eantic.unwrap_intrusive_ptr(renf.renf) return RingConversion_eantic(domain, codomain)
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = QuadraticField(2) sage: conversion = RingConversion.to_pyflatsurf(domain) # optional: pyeantic sage: conversion(domain.gen()) # optional: pyeantic (a ~ 1.4142136) """ import sage.structure.element # pylint: disable=c-extension-no-member parent = sage.structure.element.parent(x) # pylint: enable=c-extension-no-member if parent is not self.domain(): raise ValueError( f"argument must be in the domain of this conversion but {x} is in {parent} and not in {self.domain()}" ) return self._pyrenf()(list(x)).renf_elem
@cached_method def _pyrenf(self): r""" Return the pyeantic ``RealEmbeddedNumberField`` that wraps the codomain of this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = QuadraticField(2) sage: conversion = RingConversion.to_pyflatsurf(domain) # optional: pyeantic sage: conversion._pyrenf() # optional: pyeantic Real Embedded Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? """ from pyeantic import RealEmbeddedNumberField return RealEmbeddedNumberField(self.codomain())
[docs] def section(self, y): r""" Return the preimage of ``y`` under this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = QuadraticField(2) sage: conversion = RingConversion.to_pyflatsurf(domain) # optional: pyeantic sage: gen = conversion(domain.gen()) # optional: pyeantic sage: conversion.section(gen) # optional: pyeantic a """ return self.domain()(self._pyrenf()(y))
@classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Given elements from e-antic, deduce the e-antic ring they live in. This implements :meth:`RingConversion._deduce_codomain_from_codomain_elements`. Return ``None`` if this is not an e-antic element or if no single e-antic ring can handle them. INPUT: - ``elements`` -- a sequence of e-antic elements or something else EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion, RingConversion_eantic sage: conversion = RingConversion.to_pyflatsurf(QuadraticField(2)) # optional: pyeantic sage: element = conversion.codomain().gen() # optional: pyeantic sage: RingConversion_eantic._deduce_codomain_from_codomain_elements([element]) # optional: pyeantic NumberField(a^2 - 2, [...]) sage: RingConversion_eantic._deduce_codomain_from_codomain_elements([element, 2*element]) # optional: pyeantic NumberField(a^2 - 2, [...]) sage: import cppyy # optional: pyeantic sage: RingConversion_eantic._deduce_codomain_from_codomain_elements([element, cppyy.gbl.eantic.renf_elem_class()]) # optional: pyeantic NumberField(a^2 - 2, [...]) """ import pyeantic ring = None for element in elements: if not isinstance(element, pyeantic.eantic.renf_elem_class): return None import pyeantic.cppyy_eantic element_ring = pyeantic.cppyy_eantic.unwrap_intrusive_ptr(element.parent()) if ring is None or ring.degree() == 1: ring = element_ring elif element_ring != ring and element_ring.degree() != 1: return None return ring
[docs] class RingConversion_algebraic(RingConversion): r""" A conversion from the algebraic numbers in SageMath ``AA`` to an e-antic real embedded number field. EXAMPLES: There is no general notion of algebraic numbers in libflatsurf yet, so we can deduce such a conversion for a finite number of elements that span a finite number field:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(domain=AA) # optional: pyeantic Traceback (most recent call last): ... NotImplementedError: ... sage: conversion = RingConversion.to_pyflatsurf_from_elements(elements=[AA(1), AA(sqrt(2))]) # optional: pyeantic TESTS:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_algebraic sage: isinstance(conversion, RingConversion_algebraic) # optional: pyeantic True """
[docs] def __init__(self, domain, codomain): super().__init__(domain=domain, codomain=codomain) self._eantic_conversion = RingConversion_eantic._create_conversion( codomain=self.codomain() )
@classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Implements :meth:`RingConversion._create_conversion`. EXAMPLES: Since there is no generic algebraic numbers in libflatsurf, we need to know the libflatsurf number field upfront:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_algebraic sage: from pyeantic import RealEmbeddedNumberField # optional: pyeantic sage: RingConversion_algebraic._create_conversion(domain=AA, codomain=RealEmbeddedNumberField(QuadraticField(2)).renf) # optional: pyeantic Conversion from Algebraic Real Field to NumberField(a^2 - 2, [...]) """ if codomain is None: return None from sage.all import AA if domain is not AA: return None return RingConversion_algebraic(domain, codomain)
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf_from_elements(elements=[AA(sqrt(2))]) # optional: pyeantic sage: conversion(AA(sqrt(2))) # optional: pyeantic (a ~ 1.4142136) """ return self._eantic_conversion(self._eantic_conversion.domain()(x))
@classmethod def _deduce_codomain_from_domain_elements(cls, elements): r""" Return an e-antic number field that contains the algebraic SageMath ``elements``. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_algebraic sage: RingConversion_algebraic._deduce_codomain_from_domain_elements([AA(sqrt(2)), AA(sqrt(3))]) # optional: pyeantic NumberField(a^4 - 4*a^2 + 1, [...]) """ from sage.all import AA if not all(element.parent() is AA for element in elements): return None from sage.all import number_field_elements_from_algebraics, NumberField number_field, elements, embedding = number_field_elements_from_algebraics( elements, embedded=True ) return RingConversion_eantic._create_conversion(number_field).codomain() @classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Return an e-antic number field that contains the e-antic ``elements``. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_algebraic sage: from pyeantic import RealEmbeddedNumberField # optional: pyeantic sage: RingConversion_algebraic._deduce_codomain_from_codomain_elements([RealEmbeddedNumberField(QuadraticField(2)).renf.gen()]) # optional: pyeantic NumberField(a^2 - 2, [...]) """ return RingConversion_eantic._deduce_codomain_from_codomain_elements(elements)
[docs] class RingConversion_exactreal(RingConversion): r""" A conversion from a pyexactreal SageMath ring to a exact-real ring. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: from pyexactreal import ExactReals # optional: pyexactreal sage: conversion = RingConversion.to_pyflatsurf(domain=ExactReals(QQ)) # optional: pyexactreal Traceback (most recent call last): ... NotImplementedError: cannot deduce the exact real module that corresponds to this generic ring of exact reals since there is no generic exact-real ring without a fixed set of generators in libexactreal yet sage: from pyexactreal import QQModule, RealNumber # optional: pyexactreal sage: M = QQModule(RealNumber.rational(1)) # optional: pyexactreal sage: conversion = RingConversion.to_pyflatsurf(domain=ExactReals(QQ), codomain=M) # optional: pyexactreal sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: isinstance(conversion, RingConversion_exactreal) # optional: pyexactreal True """ @classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Implements :meth:`RingConversion._create_conversion`. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: M = QQModule(RealNumber.rational(1)) # optional: pyexactreal sage: RingConversion_exactreal._create_conversion(domain=ExactReals(QQ), codomain=M) # optional: pyexactreal Conversion from Real Numbers as (Rational Field)-Module to ℚ-Module(1) TESTS:: sage: M = QQModule(RealNumber.rational(1)) # optional: pyexactreal sage: RingConversion_exactreal._create_conversion(codomain=M) # optional: pyexactreal Conversion from Real Numbers as (Rational Field)-Module to ℚ-Module(1) :: sage: from pyexactreal import ZZModule # optional: pyexactreal sage: M = ZZModule(RealNumber.rational(1)) # optional: pyexactreal sage: RingConversion_exactreal._create_conversion(codomain=M) # optional: pyexactreal # known bug, this does not work currently but we also are not planning to use this :: sage: from pyexactreal import ZZModule, RealNumber, NumberField, NumberFieldModule # optional: pyexactreal sage: M = NumberFieldModule(NumberField("x^2 - 2", "x", "1.4 +/- 1"), RealNumber.rational(1)) # optional: pyexactreal sage: RingConversion_exactreal._create_conversion(codomain=M) # optional: pyexactreal Conversion from Real Numbers as (Real Embedded Number Field in x with defining polynomial x^2 - 2 with x = 1.414213562373095?)-Module to K-Module(1) """ if domain is None and codomain is None: raise ValueError("at least one of domain and codomain must be set") if domain is None: base_conversion_codomain = codomain.ring() if hasattr(base_conversion_codomain, "parameters"): domain_base_conversion = RingConversion.from_pyflatsurf( codomain=base_conversion_codomain.parameters ) elif type(base_conversion_codomain).__name__ == "IntegerRing": from sage.all import ZZ domain_base_conversion = RingConversion.from_pyflatsurf( domain=ZZ, codomain=None ) elif type(base_conversion_codomain).__name__ == "RationalField": from sage.all import QQ domain_base_conversion = RingConversion.from_pyflatsurf( domain=QQ, codomain=None ) else: raise NotImplementedError from pyexactreal import ExactReals domain = ExactReals(domain_base_conversion.domain()) if codomain is None: from pyeantic.real_embedded_number_field import RealEmbeddedNumberField # TODO: Add the other base rings. if isinstance(domain.base_ring(), RealEmbeddedNumberField): import pyexactreal codomain = pyexactreal.exactreal.Module[ pyexactreal.exactreal.NumberField ] else: raise NotImplementedError( "cannot deduce the exact real module that corresponds to this generic ring of exact reals since there is no generic exact-real ring without a fixed set of generators in libexactreal yet" ) return RingConversion_exactreal(domain, codomain)
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: domain = ExactReals(QQ) # optional: pyexactreal sage: M = QQModule(RealNumber.rational(1)) # optional: pyexactreal sage: conversion = RingConversion_exactreal._create_conversion(domain=domain, codomain=M) # optional: pyexactreal sage: conversion(domain(1)) # optional: pyexactreal 1 """ import sage.structure.element # pylint: disable=c-extension-no-member parent = sage.structure.element.parent(x) # pylint: enable=c-extension-no-member if parent is not self.domain(): raise ValueError( f"argument must be in the domain of this conversion but {x} is in {parent} and not in {self.domain()}" ) return x._backend
@classmethod def _deduce_codomain_from_domain_elements(cls, elements): r""" Return an exact-real module that contains the SageMath pyexactreal ``elements``. INPUT: - ``elements`` -- a sequence of pyexactreal elements that SageMath understands. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: domain = ExactReals(QQ) # optional: pyexactreal sage: RingConversion_exactreal._deduce_codomain_from_domain_elements([domain.random_element()]) # optional: pyexactreal ℚ-Module(ℝ(...)) sage: RingConversion_exactreal._deduce_codomain_from_domain_elements([domain.one(), domain.random_element()]) # optional: pyexactreal ℚ-Module(1, ℝ(...)) """ codomain = None if any(not hasattr(element, "_backend") for element in elements): return None return RingConversion_exactreal._deduce_codomain_from_codomain_elements( [element._backend for element in elements] ) def _vectors(self): r""" Return the pyflatsurf parent of vectors over the codomain of this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: domain = ExactReals(QQ) # optional: pyexactreal sage: M = QQModule(RealNumber.rational(1)) # optional: pyexactreal sage: conversion = RingConversion_exactreal._create_conversion(domain=domain, codomain=M) # optional: pyexactreal sage: conversion._vectors() # optional: pyexactreal # optional: pyflatsurf Flatsurf Vectors over Real Numbers as (Rational Field)-Module """ pyflatsurf_feature.require() from pyflatsurf.vector import Vectors from pyexactreal.exact_reals import ExactReals from pyeantic.real_embedded_number_field import RealEmbeddedNumberField if isinstance(self.domain(), ExactReals): return Vectors(self.domain()) # TODO: Add the other base rings. if isinstance(self.domain().base_ring(), RealEmbeddedNumberField): return Vectors(ExactReals(self.domain().base_ring().number_field)) raise NotImplementedError @classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Return an exact-real module that contains the exact-real elements. INPUT: - ``elements`` -- a sequence of exact-real module elements EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: domain = ExactReals(QQ) # optional: pyexactreal sage: RingConversion_exactreal._deduce_codomain_from_codomain_elements([domain.random_element()._backend]) # optional: pyexactreal ℚ-Module(ℝ(...)) sage: RingConversion_exactreal._deduce_codomain_from_codomain_elements([domain.one()._backend, domain.random_element()._backend]) # optional: pyexactreal ℚ-Module(1, ℝ(...)) """ module = None for element in elements: if not element.__class__.__name__.startswith("Element<"): return None element_module = element.module() if module is None: module = element_module module = module.span(module, element_module) return module
[docs] def section(self, y): r""" Return the preimage of ``y`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_exactreal sage: from pyexactreal import QQModule, RealNumber, ExactReals # optional: pyexactreal sage: domain = ExactReals(QQ) # optional: pyexactreal sage: M = QQModule(RealNumber.random()) # optional: pyexactreal sage: conversion = RingConversion_exactreal._create_conversion(domain=domain, codomain=M) # optional: pyexactreal sage: conversion.section(M.gen(0R)) # optional: pyexactreal ℝ(...) """ return self.domain()(y)
[docs] class RingConversion_int(RingConversion): r""" Conversion between SageMath integers and machine long long integers. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(domain=int) # optional: gmpxxyy sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_int sage: isinstance(conversion, RingConversion_int) # optional: gmpxxyy True """ @classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Implements :meth:`RingConversion._create_conversion`. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_int sage: RingConversion_int._create_conversion(domain=int) # optional: gmpxxyy Conversion from <class 'int'> to long long """ if domain is None and codomain is None: raise ValueError("at least one of domain and codomain must be set") import cppyy longlong = getattr(cppyy.gbl, "long long") if domain in [None, int] and codomain in [None, longlong]: return RingConversion_int(int, longlong) return None @classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Given long longs, return the long long type. This implements :meth:`RingConversion._deduce_codomain_from_codomain_elements`. Return ``None`` if these are not long long element. INPUT: - ``element`` -- a long long or something else EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion, RingConversion_int sage: conversion = RingConversion.to_pyflatsurf(int) # optional: gmpxxyy sage: element = conversion.codomain()(1R) # optional: gmpxxyy sage: RingConversion_int._deduce_codomain_from_codomain_elements([element]) # optional: gmpxxyy <class 'cppyy.gbl.long long'> """ import cppyy longlong = getattr(cppyy.gbl, "long long") for element in elements: if not isinstance(element, longlong): return None return longlong
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = int sage: conversion = RingConversion.to_pyflatsurf(int) # optional: gmpxxyy sage: conversion(1R) # optional: gmpxxyy 1 """ if not isinstance(x, int): raise ValueError("argument must be an int") return self.codomain()(x)
[docs] def section(self, y): r""" Return the preimage of ``y`` under this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = int sage: conversion = RingConversion.to_pyflatsurf(domain) # optional: gmpxxyy sage: y = conversion(3R) # optional: gmpxxyy sage: conversion.section(y) # optional: gmpxxyy 3 """ return self.domain()(str(y))
[docs] class RingConversion_gmp(RingConversion): r""" Conversion between SageMath integers and rationals and GMP mpz and mpq. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: conversion = RingConversion.to_pyflatsurf(domain=ZZ) # optional: gmpxxyy sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_gmp sage: isinstance(conversion, RingConversion_gmp) # optional: gmpxxyy True """ @classmethod def _create_conversion(cls, domain=None, codomain=None): r""" Implements :meth:`RingConversion._create_conversion`. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion_gmp sage: RingConversion_gmp._create_conversion(domain=ZZ) # optional: gmpxxyy Conversion from Integer Ring to __gmp_expr<__mpz_struct[1],__mpz_struct[1]> """ if domain is None and codomain is None: raise ValueError("at least one of domain and codomain must be set") from sage.all import ZZ, QQ import cppyy import gmpxxyy if domain is None: if codomain == cppyy.gbl.mpz_class: domain = ZZ elif codomain is cppyy.gbl.mpq_class: domain = QQ else: return None if codomain is None: if domain is ZZ: codomain = cppyy.gbl.mpz_class elif domain is QQ: codomain = cppyy.gbl.mpq_class else: return None if domain is ZZ and codomain is cppyy.gbl.mpz_class: return RingConversion_gmp(domain, codomain) if domain is QQ and codomain is cppyy.gbl.mpq_class: return RingConversion_gmp(domain, codomain) return None @classmethod def _deduce_codomain_from_codomain_elements(cls, elements): r""" Given elements from GMP, return the GMP ring they live in. This implements :meth:`RingConversion._deduce_codomain_from_codomain_elements`. Return ``None`` if they're not (compatible) GMP elements. INPUT: - ``elements`` -- a sequence of GMP elements or something else EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion, RingConversion_gmp sage: conversion = RingConversion.to_pyflatsurf(ZZ) # optional: gmpxxyy sage: element = conversion.codomain()(1) # optional: gmpxxyy sage: RingConversion_gmp._deduce_codomain_from_codomain_elements([element]) # optional: gmpxxyy <class cppyy.gbl.__gmp_expr<__mpz_struct[1],__mpz_struct[1]> at 0x...> """ import cppyy import gmpxxyy ring = None for element in elements: if isinstance(element, cppyy.gbl.mpz_class): if ring is None or ring is cppyy.gbl.mpz_class: ring = cppyy.gbl.mpz_class else: return None if isinstance(element, cppyy.gbl.mpq_class): if ring is None or ring is cppyy.gbl.mpq_class: ring = cppyy.gbl.mpq_class else: return None return ring
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = QQ sage: conversion = RingConversion.to_pyflatsurf(QQ) # optional: gmpxxyy sage: x = 1/3 sage: y = conversion(x) # optional: gmpxxyy sage: conversion.section(y) # optional: gmpxxyy 1/3 """ import sage.structure.element # pylint: disable=c-extension-no-member parent = sage.structure.element.parent(x) # pylint: enable=c-extension-no-member if parent is not self.domain(): raise ValueError( f"argument must be in the domain of this conversion but {x} is in {parent} and not in {self.domain()}" ) return self.codomain()(str(x))
[docs] def section(self, y): r""" Return the preimage of ``y`` under this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import RingConversion sage: domain = QQ sage: conversion = RingConversion.to_pyflatsurf(domain) # optional: gmpxxyy sage: y = conversion(1/3) # optional: gmpxxyy sage: conversion.section(y) # optional: gmpxxyy 1/3 """ return self.domain()(str(y))
[docs] class VectorSpaceConversion(Conversion): r""" Converts vectors in a SageMath vector space into libflatsurf ``Vector<T>``\s. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: conversion = VectorSpaceConversion.to_pyflatsurf(QQ^2) # optional: pyflatsurf """
[docs] def __init__(self, domain, codomain, ring_conversion=None): if ring_conversion is None: ring_conversion = RingConversion.to_pyflatsurf(domain.base_ring()) self._ring_conversion = ring_conversion super().__init__(domain, codomain)
[docs] @classmethod def to_pyflatsurf(cls, domain, codomain=None, ring_conversion=None): r""" Return a :class:`Conversion` from ``domain`` to ``codomain``. INPUT: - ``domain`` -- a SageMath free module - ``codomain`` -- a libflatsurf ``Vector<T>`` type or ``None`` (default: ``None``); if ``None``, the type is determined automatically. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: conversion = VectorSpaceConversion.to_pyflatsurf(QQ^2) # optional: pyflatsurf """ pyflatsurf_feature.require() if codomain is None: if ring_conversion is None: ring_conversion = RingConversion.to_pyflatsurf(domain.base_ring()) from pyflatsurf.vector import Vectors codomain = Vectors(ring_conversion.domain()).Vector return VectorSpaceConversion(domain, codomain, ring_conversion=ring_conversion)
[docs] @classmethod def from_pyflatsurf_from_elements(cls, elements, domain=None, ring_conversion=None): r""" Return a :class:`Conversion` that converts the pyflatsurf ``elements`` into vectors in ``domain``. INPUT: - ``domain`` -- a SageMath ``VectorSpace`` or ``None``; if ``None``, it is determined automatically. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: codomain = VectorSpaceConversion.to_pyflatsurf(QQ^2).codomain() # optional: pyflatsurf sage: VectorSpaceConversion.from_pyflatsurf_from_elements([codomain()]) # optional: pyflatsurf Conversion from Vector space of dimension 2 over Rational Field to flatsurf::Vector<__gmp_expr<__mpq_struct[1],__mpq_struct[1]>...> """ if domain is None: ring_conversion = RingConversion.from_pyflatsurf_from_elements( [element.x() for element in elements] + [element.y() for element in elements] ) from sage.all import VectorSpace domain = VectorSpace(ring_conversion.domain(), 2) return VectorSpaceConversion.to_pyflatsurf( domain=domain, ring_conversion=ring_conversion )
[docs] @classmethod def to_pyflatsurf_from_elements(cls, elements, codomain=None): r""" Return a conversion that can convert the SageMath ``elements`` to ``codomain``. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: VectorSpaceConversion.to_pyflatsurf_from_elements([vector((1, 2))]) # optional: pyflatsurf Conversion from Ambient free module of rank 2 over the principal ideal domain Integer Ring to ... sage: VectorSpaceConversion.to_pyflatsurf_from_elements([vector((1, 2)), vector((1/2, 2/3))]) # optional: pyflatsurf Conversion from Vector space of dimension 2 over Rational Field to ... """ ring_conversion = RingConversion.to_pyflatsurf_from_elements( [v[0] for v in elements] + [v[1] for v in elements] ) from sage.all import Sequence return cls.to_pyflatsurf( domain=Sequence(elements).universe(), codomain=codomain or ring_conversion._vectors(), ring_conversion=ring_conversion, )
@cached_method def _vectors(self): r""" Return the pyflatsurf ``Vectors`` helper for the codomain of this conversion. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: conversion = VectorSpaceConversion.to_pyflatsurf(QQ^2) # optional: pyflatsurf sage: conversion._vectors() # optional: pyflatsurf Flatsurf Vectors over Rational Field """ return self._ring_conversion._vectors()
[docs] def __call__(self, vector): r""" Return a ``Vector<T>`` corresponding to the SageMath ``vector``. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: conversion = VectorSpaceConversion.to_pyflatsurf(QQ^2) # optional: pyflatsurf sage: conversion(vector(QQ, [1, 2])) # optional: pyflatsurf (1, 2) """ return self._vectors()( [self._ring_conversion(coordinate) for coordinate in vector] ).vector
[docs] def section(self, vector): r""" Return the SageMath vector corresponding to the pyflatsurf ``vector``. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import VectorSpaceConversion sage: conversion = VectorSpaceConversion.to_pyflatsurf(QQ^2) # optional: pyflatsurf sage: v = vector(QQ, [1, 2]) # optional: pyflatsurf sage: conversion.section(conversion(v)) == v # optional: pyflatsurf True """ return self.domain()( [ self._ring_conversion.section(vector.x()), self._ring_conversion.section(vector.y()), ] )
[docs] class FlatTriangulationConversion(Conversion): r""" Converts a sage-flatsurf surface to a ``FlatTriangulation`` object and vice-versa. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf """
[docs] def __init__(self, domain, codomain, label_to_half_edge): r""" EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.square_torus().triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: isinstance(conversion, FlatTriangulationConversion) # optional: pyflatsurf True """ super().__init__(domain=domain, codomain=codomain) # Note that we should probably use a bidict here instead. self._label_to_half_edge = label_to_half_edge self._half_edge_to_label = { half_edge: label for (label, half_edge) in label_to_half_edge.items() }
[docs] @classmethod def to_pyflatsurf(cls, domain, codomain=None): r""" Return a :class:`Conversion` from ``domain`` to the ``codomain``. INPUT: - ``domain`` -- a sage-flatsurf surface - ``codomain`` -- a ``FlatTriangulation`` or ``None`` (default: ``None``); if ``None``, the corresponding ``FlatTriangulation`` is constructed. .. NOTE: The ``codomain``, if given, must be indistinguishable from the codomain that this method would construct automatically. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf """ pyflatsurf_feature.require() from flatsurf.geometry.categories import TranslationSurfaces if domain not in TranslationSurfaces(): raise TypeError("domain must be a translation surface") if not domain.is_finite_type(): raise ValueError("domain must be finite") if not domain.is_triangulated(): raise ValueError("domain must be triangulated") if codomain is None: vertex_permutation = cls._pyflatsurf_vertex_permutation(domain) vectors = cls._pyflatsurf_vectors(domain) from pyflatsurf.factory import make_surface codomain = make_surface(vertex_permutation, vectors) return FlatTriangulationConversion( domain, codomain, cls._pyflatsurf_labels(domain) )
@classmethod def _pyflatsurf_labels(cls, domain): r""" Return a mapping of the edges of the polygons of ``domain`` to half edges numbered compatibly with libflatsurf/pyflatsurf, i.e., by consecutive integers such that the opposite of an edge has the negative of that edge's label. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: FlatTriangulationConversion._pyflatsurf_labels(S) {((0, 0), 0): 1, ((0, 0), 1): 2, ((0, 0), 2): 3, ((0, 1), 0): -3, ((0, 1), 1): 5, ((0, 1), 2): 6, ((0, 2), 0): -6, ((0, 2), 1): 8, ((0, 2), 2): 9, ((1, 0), 0): -1, ((1, 0), 1): -2, ((1, 0), 2): 4, ((1, 1), 0): -4, ((1, 1), 1): -5, ((1, 1), 2): 7, ((1, 2), 0): -7, ((1, 2), 1): -8, ((1, 2), 2): -9} """ if domain.is_with_boundary(): raise NotImplementedError( "cannot convert a surface with boundary to pyflatsurf yet" ) labels = {} for half_edge, opposite_half_edge in domain.gluings(): if half_edge in labels: continue labels[half_edge] = len(labels) // 2 + 1 labels[opposite_half_edge] = -labels[half_edge] return labels @classmethod def _pyflatsurf_vectors(cls, domain): r""" Return the vectors of the positive half edges in ``domain`` in order. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: FlatTriangulationConversion._pyflatsurf_vectors(S) # optional: pyflatsurf [(1, 0), ((1/2*a^2 - 3/2 ~ 0.30901699), (1/2*a ~ 0.95105652)), ((-1/2*a^2 + 1/2 ~ -1.3090170), (-1/2*a ~ -0.95105652)), ((1/2*a^2 - 1/2 ~ 1.3090170), (1/2*a ~ 0.95105652)), ((-1/2*a^2 + 1 ~ -0.80901699), (1/2*a^3 - 3/2*a ~ 0.58778525)), ((-1/2 ~ -0.50000000), (-1/2*a^3 + 1*a ~ -1.5388418)), ((1/2 ~ 0.50000000), (1/2*a^3 - 1*a ~ 1.5388418)), ((-1/2*a^2 + 1 ~ -0.80901699), (-1/2*a^3 + 3/2*a ~ -0.58778525)), ((1/2*a^2 - 3/2 ~ 0.30901699), (-1/2*a ~ -0.95105652))] """ labels = cls._pyflatsurf_labels(domain) vectors = [None] * (len(labels) // 2) for (polygon, edge), half_edge in labels.items(): if half_edge < 0: continue vectors[half_edge - 1] = domain.polygon(polygon).edge(edge) vector_conversion = VectorSpaceConversion.to_pyflatsurf_from_elements(vectors) return [vector_conversion(vector) for vector in vectors] @classmethod def _pyflatsurf_vertex_permutation(cls, domain): r""" Return the permutation of half edges around vertices of ``domain`` in cycle notation. The permutation uses integers, as provided by :meth:`_pyflatsurf_labels`. INPUT: - ``domain`` -- a sage-flatsurf surface EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: FlatTriangulationConversion._pyflatsurf_vertex_permutation(S) [[1, -3, -6, -9, 8, 6, -5, 4, 2, -1, -4, -7, 9, -8, 7, 5, 3, -2]] """ pyflatsurf_labels = cls._pyflatsurf_labels(domain) vertex_permutation = {} for polygon, edge in domain.edges(): pyflatsurf_edge = pyflatsurf_labels[(polygon, edge)] next_edge = (edge + 1) % len(domain.polygon(polygon).vertices()) pyflatsurf_next_edge = pyflatsurf_labels[(polygon, next_edge)] vertex_permutation[pyflatsurf_next_edge] = -pyflatsurf_edge return cls._cycle_decomposition(vertex_permutation) @classmethod def _cycle_decomposition(self, permutation): r""" Return a permutation in cycle notation. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: FlatTriangulationConversion._cycle_decomposition({}) [] sage: FlatTriangulationConversion._cycle_decomposition({1: 1, -1: -1}) [[1], [-1]] sage: FlatTriangulationConversion._cycle_decomposition({1: 2, 2: 1, 3: 4, 4: 5, 5: 3}) [[1, 2], [3, 4, 5]] """ cycles = [] elements = set(permutation.keys()) while elements: cycle = [elements.pop()] while True: cycle.append(permutation[cycle[-1]]) if cycle[-1] == cycle[0]: cycle.pop() cycles.append(cycle) break elements.remove(cycle[-1]) return cycles
[docs] @classmethod def from_pyflatsurf(cls, codomain, domain=None): r""" Return a :class:`Conversion` from ``domain`` to ``codomain``. INPUT: - ``codomain`` -- a ``FlatTriangulation`` - ``domain`` -- a sage-flatsurf surface or ``None`` (default: ``None``); if ``None``, the corresponding surface is constructed. .. NOTE: The ``domain``, if given, must be indistinguishable from the domain that this method would construct automatically. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: FlatTriangulationConversion.from_pyflatsurf(conversion.codomain()) # optional: pyflatsurf Conversion from ... """ pyflatsurf_feature.require() from bidict import bidict half_edge_to_polygon_edge = bidict() for a, b, c in codomain.faces(): label = (a.id(), b.id(), c.id()) half_edge_to_polygon_edge[a] = (label, 0) half_edge_to_polygon_edge[b] = (label, 1) half_edge_to_polygon_edge[c] = (label, 2) if domain is None: ring_conversion = RingConversion.from_pyflatsurf_from_flat_triangulation( codomain ) from flatsurf import MutableOrientedSimilaritySurface, Polygon domain = MutableOrientedSimilaritySurface(ring_conversion.domain()) from sage.all import VectorSpace vector_conversion = VectorSpaceConversion.to_pyflatsurf( VectorSpace(ring_conversion.domain(), 2) ) for a, b, c in codomain.faces(): vectors = [ codomain.fromHalfEdge(a), codomain.fromHalfEdge(b), codomain.fromHalfEdge(c), ] vectors = [vector_conversion.section(vector) for vector in vectors] triangle = Polygon(edges=vectors) label = (a.id(), b.id(), c.id()) domain.add_polygon(triangle, label=label) for half_edge, (polygon, edge) in half_edge_to_polygon_edge.items(): opposite = half_edge_to_polygon_edge[-half_edge] domain.glue((polygon, edge), opposite) domain.set_immutable() return FlatTriangulationConversion( domain, codomain, { (label, edge): half_edge.id() for ( (label, edge), half_edge, ) in half_edge_to_polygon_edge.inverse.items() }, )
[docs] @cached_method def ring_conversion(self): r""" Return the conversion that maps the base ring of the domain of this conversion to the base ring of the codomain of this conversion. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion.ring_conversion() # optional: pyflatsurf Conversion from Number Field in a with defining polynomial y^4 - 5*y^2 + 5 with a = 1.902113032590308? to NumberField(a^4 - 5*a^2 + 5, [...]) """ return RingConversion.to_pyflatsurf(domain=self.domain().base_ring())
[docs] @cached_method def vector_space_conversion(self): r""" Return the conversion maps two-dimensional vectors over the base ring of the domain to ``Vector<T>`` for the codomain. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion.vector_space_conversion() # optional: pyflatsurf Conversion from Vector space of dimension 2 over Number Field in a with defining polynomial y^4 - 5*y^2 + 5 with a = 1.902113032590308? to flatsurf::Vector<eantic::renf_elem_class> """ from sage.all import VectorSpace return VectorSpaceConversion.to_pyflatsurf( VectorSpace(self.ring_conversion().domain(), 2) )
[docs] def __call__(self, x): r""" Return the image of ``x`` under this conversion. INPUT: - ``x`` -- an object defined on the domain, e.g., a :class:`flatsurf.geometry.surface_objects.SurfacePoint` EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf We map a point:: sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: conversion(p) # optional: pyflatsurf ((-1/4*a^2 + 1/2*a + 1/2 ~ 0.54654802), (1/4*a^2 - 3/4 ~ 0.15450850), (1/4 ~ 0.25000000)) in (-6, 8, 9) We map a half edge:: sage: conversion(((0, 0), 0)) # optional: pyflatsurf 1 """ from flatsurf.geometry.surface_objects import SurfacePoint if isinstance(x, SurfacePoint): return self._image_point(x) if isinstance(x, tuple) and len(x) == 2: return self._image_half_edge(*x) raise NotImplementedError( f"cannot map {type(x)} from sage-flatsurf to pyflatsurf yet" )
[docs] def section(self, y): r""" Return the preimage of ``y`` under this conversion. INPUT: - ``y`` -- an object defined in the codomain, e.g., a pyflatsurf ``Point`` EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf We roundtrip a point:: sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: q = conversion(p) # optional: pyflatsurf sage: conversion.section(q) == p # optional: pyflatsurf True We roundtrip a half edge:: sage: half_edge = conversion(((0, 0), 0)) # optional: pyflatsurf sage: conversion.section(half_edge) # optional: pyflatsurf ((0, 0), 0) """ import pyflatsurf if isinstance(y, pyflatsurf.flatsurf.Point[type(self.codomain())]): return self._preimage_point(y) if isinstance(y, pyflatsurf.flatsurf.HalfEdge): return self._preimage_half_edge(y) raise NotImplementedError( f"cannot compute the preimage of a {type(y)} in sage-flatsurf yet" )
def _image_point(self, p): r""" Return the image of the :class:`SurfacePoint` ``p`` under this conversion. This is a helper method for :meth:`__call__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: conversion._image_point(p) # optional: pyflatsurf ((-1/4*a^2 + 1/2*a + 1/2 ~ 0.54654802), (1/4*a^2 - 3/4 ~ 0.15450850), (1/4 ~ 0.25000000)) in (-6, 8, 9) """ if p.surface() is not self.domain(): raise ValueError("point is not a point in the domain of this conversion") label = next(iter(p.labels())) coordinates = next(iter(p.coordinates(label))) import pyflatsurf return pyflatsurf.flatsurf.Point[type(self.codomain())]( self.codomain(), self((label, 0)), self.vector_space_conversion()( coordinates - p.parent().polygon(label).vertex(0) ), ) def _preimage_point(self, q): r""" Return the preimage of the point ``q`` in the domain of this conversion. This is a helper method for :meth:`section`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: p = SurfacePoint(S, (0, 2), (0, 1/2)) sage: q = conversion(p) # optional: pyflatsurf sage: conversion._preimage_point(q) # optional: pyflatsurf Point (0, 1/2) of polygon (0, 2) """ face = q.face() label, edge = self.section(face) coordinates = self.vector_space_conversion().section(q.vector(face)) coordinates += self.domain().polygon(label).vertex(edge) from flatsurf.geometry.surface_objects import SurfacePoint return SurfacePoint(self.domain(), label, coordinates) def _image_half_edge(self, label, edge): r""" Return the half edge that ``edge`` of polygon ``label`` maps to under this conversion. This is a helper method for :meth:`__call__`. INPUT: - ``label`` -- an arbitrary polygon label in the :meth:`domain` - ``edge`` -- an integer, the identifier of an edge in the polygon ``label`` EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion._image_half_edge((0, 0), 0) # optional: pyflatsurf 1 """ import pyflatsurf return pyflatsurf.flatsurf.HalfEdge(self._label_to_half_edge[(label, edge)]) def _preimage_half_edge(self, half_edge): r""" Return the preimage of the ``half_edge`` in the domain of this conversion as a pair ``(label, edge)``. This is a helper method for :meth:`section`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: import pyflatsurf # optional: pyflatsurf sage: conversion._preimage_half_edge(pyflatsurf.flatsurf.HalfEdge(1R)) # optional: pyflatsurf ((0, 0), 0) """ return self._half_edge_to_label[half_edge.id()]
[docs] def __eq__(self, other): r""" Return whether this conversion is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import FlatTriangulationConversion sage: from flatsurf.geometry.surface_objects import SurfacePoint sage: S = translation_surfaces.veech_double_n_gon(5).triangulate().codomain() sage: conversion1 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion2 = FlatTriangulationConversion.to_pyflatsurf(S) # optional: pyflatsurf sage: conversion1 == conversion2 # optional: pyflatsurf True """ if not isinstance(other, FlatTriangulationConversion): return False return ( self.domain() == other.domain() and self._label_to_half_edge == other._label_to_half_edge )
[docs] def to_pyflatsurf(S): r""" Given S a translation surface from sage-flatsurf return a flatsurf::FlatTriangulation from libflatsurf/pyflatsurf. """ return FlatTriangulationConversion.to_pyflatsurf( S.triangulate().codomain() ).codomain()
[docs] def sage_ring(surface): r""" Return the SageMath ring over which the pyflatsurf surface ``surface`` can be constructed in sage-flatsurf. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import to_pyflatsurf, sage_ring # optional: pyflatsurf sage: S = to_pyflatsurf(translation_surfaces.veech_double_n_gon(5)) # optional: pyflatsurf # random output due to matplotlib warnings with some combinations of setuptools and matplotlib sage: sage_ring(S) # optional: pyflatsurf Number Field in a with defining polynomial x^4 - 5*x^2 + 5 with a = 1.902113032590308? """ from sage.all import Sequence vectors = [surface.fromHalfEdge(e.positive()) for e in surface.edges()] return Sequence( [to_sage_ring(v.x()) for v in vectors] + [to_sage_ring(v.y()) for v in vectors] ).universe()
[docs] def to_sage_ring(x): r""" Given a coordinate of a flatsurf::Vector, return a SageMath element from which :meth:`from_pyflatsurf` can eventually construct a translation surface. EXAMPLES:: sage: from flatsurf.geometry.pyflatsurf.conversion import to_sage_ring # optional: pyflatsurf sage: to_sage_ring(1R).parent() # optional: pyflatsurf Integer Ring GMP coordinate types:: sage: import cppyy # optional: pyflatsurf sage: import pyeantic # optional: pyflatsurf sage: to_sage_ring(cppyy.gbl.mpz_class(1)).parent() # optional: pyflatsurf Integer Ring sage: to_sage_ring(cppyy.gbl.mpq_class(1, 2)).parent() # optional: pyflatsurf Rational Field e-antic coordinate types:: sage: import pyeantic # optional: pyflatsurf sage: K = pyeantic.eantic.renf_class.make("a^3 - 3*a + 1", "a", "0.34 +/- 0.01", 64R) # optional: pyflatsurf sage: to_sage_ring(K.gen()).parent() # optional: pyflatsurf Number Field in a with defining polynomial x^3 - 3*x + 1 with a = 0.3472963553338607? exact-real coordinate types:: sage: from pyexactreal import QQModule, RealNumber # optional: pyflatsurf sage: M = QQModule(RealNumber.random()) # optional: pyflatsurf sage: to_sage_ring(M.gen(0R)).parent() # optional: pyflatsurf Real Numbers as (Rational Field)-Module """ from flatsurf.features import cppyy_feature cppyy_feature.require() import cppyy import gmpxxyy def maybe_type(t): try: return t() except AttributeError: # The type constructed by t might not exist because the required C++ library has not been loaded. return None from sage.all import QQ, ZZ if type(x) is int: return ZZ(x) elif type(x) is maybe_type(lambda: cppyy.gbl.mpz_class): return ZZ(str(x)) elif type(x) is maybe_type(lambda: cppyy.gbl.mpq_class): return QQ(str(x)) elif type(x) is maybe_type(lambda: cppyy.gbl.eantic.renf_elem_class): from pyeantic import RealEmbeddedNumberField real_embedded_number_field = RealEmbeddedNumberField(x.parent()) return real_embedded_number_field.number_field(real_embedded_number_field(x)) elif type(x) is maybe_type( lambda: cppyy.gbl.exactreal.Element[cppyy.gbl.exactreal.IntegerRing] ): from pyexactreal import ExactReals return ExactReals(ZZ)(x) elif type(x) is maybe_type( lambda: cppyy.gbl.exactreal.Element[cppyy.gbl.exactreal.RationalField] ): from pyexactreal import ExactReals return ExactReals(QQ)(x) elif type(x) is maybe_type( lambda: cppyy.gbl.exactreal.Element[cppyy.gbl.exactreal.NumberField] ): from pyexactreal import ExactReals return ExactReals(x.module().ring().parameters)(x) else: raise NotImplementedError( f"unknown coordinate ring for element {x} which is a {type(x)}" )
[docs] def from_pyflatsurf(T): r""" Given T a flatsurf::FlatTriangulation from libflatsurf/pyflatsurf, return a sage-flatsurf translation surface. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: from flatsurf.geometry.pyflatsurf.conversion import to_pyflatsurf, from_pyflatsurf # optional: pyflatsurf sage: S = translation_surfaces.veech_double_n_gon(5) # optional: pyflatsurf sage: T = from_pyflatsurf(to_pyflatsurf(S)) # optional: pyflatsurf sage: T # optional: pyflatsurf Translation Surface in H_2(2) built from 6 isosceles triangles TESTS:: sage: from flatsurf.geometry.categories import TranslationSurfaces sage: T in TranslationSurfaces() # optional: pyflatsurf True Verify that #137 has been resolved:: sage: from flatsurf import polygons, MutableOrientedSimilaritySurface sage: from flatsurf.geometry.gl2r_orbit_closure import GL2ROrbitClosure sage: from flatsurf.geometry.pyflatsurf.conversion import from_pyflatsurf sage: P = polygons.regular_ngon(10) sage: S = MutableOrientedSimilaritySurface(P.base_ring()) sage: S.add_polygon(P) 0 sage: for i in range(5): S.glue((0, i), (0, 5+i)) sage: S.set_immutable() sage: M = S sage: X = GL2ROrbitClosure(M) # optional: pyflatsurf sage: D0 = list(X.decompositions(2))[2] # optional: pyflatsurf sage: T0 = D0.triangulation() # optional: pyflatsurf sage: from_pyflatsurf(T0) # optional: pyflatsurf Translation Surface in H_2(1^2) built from 2 isosceles triangles and 6 triangles """ return FlatTriangulationConversion.from_pyflatsurf(T).domain()