Source code for flatsurf.geometry.circle

r"""
This class contains methods useful for working with circles.

This will be used to build a LazyDelaunayTriangulation class which will compute the
Delaunay decomposition for infinite surfaces.
"""

# ****************************************************************************
#  This file is part of sage-flatsurf.
#
#       Copyright (C) 2013-2019 Vincent Delecroix
#                     2013-2019 W. Patrick Hooper
#
#  sage-flatsurf is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 2 of the License, or
#  (at your option) any later version.
#
#  sage-flatsurf is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
# ****************************************************************************

from sage.modules.free_module import VectorSpace
from sage.modules.free_module_element import vector


[docs] def circle_from_three_points(p, q, r, base_ring=None): r""" Construct a circle from three points on the circle. """ if base_ring is None: base_ring = p.base_ring() V2 = VectorSpace(base_ring.fraction_field(), 2) V3 = VectorSpace(base_ring.fraction_field(), 3) v1 = V3((p[0] + q[0], p[1] + q[1], 2)) v2 = V3((p[1] - q[1], q[0] - p[0], 0)) line1 = v1.cross_product(v2) v1 = V3((p[0] + r[0], p[1] + r[1], 2)) v2 = V3((p[1] - r[1], r[0] - p[0], 0)) line2 = v1.cross_product(v2) center_3 = line1.cross_product(line2) if center_3[2].is_zero(): raise ValueError("The three points lie on a line.") center = V2((center_3[0] / center_3[2], center_3[1] / center_3[2])) return Circle(center, (p[0] - center[0]) ** 2 + (p[1] - center[1]) ** 2)
[docs] class Circle: def __init__(self, center, radius_squared, base_ring=None): r""" Construct a circle from a Vector representing the center, and the radius squared. """ if base_ring is None: self._base_ring = radius_squared.parent() else: self._base_ring = base_ring # for calculations: self._V2 = VectorSpace(self._base_ring, 2) self._V3 = VectorSpace(self._base_ring, 3) self._center = self._V2(center) self._center.set_immutable() self._radius_squared = self._base_ring(radius_squared)
[docs] def center(self): r""" Return the center of the circle as a vector. """ return self._center
[docs] def radius_squared(self): r""" Return the square of the radius of the circle. """ return self._radius_squared
[docs] def point_position(self, point): r""" Return 1 if point lies in the circle, 0 if the point lies on the circle, and -1 if the point lies outide the circle. """ value = ( (point[0] - self._center[0]) ** 2 + (point[1] - self._center[1]) ** 2 - self._radius_squared ) if value > self._base_ring.zero(): return -1 if value < self._base_ring.zero(): return 1 return 0
[docs] def closest_point_on_line(self, point, direction_vector): r""" Consider the line through the provided point in the given direction. Return the closest point on this line to the center of the circle. """ cc = self._V3((self._center[0], self._center[1], self._base_ring.one())) # point at infinite orthogonal to direction_vector: dd = self._V3( (direction_vector[1], -direction_vector[0], self._base_ring.zero()) ) l1 = cc.cross_product(dd) pp = self._V3((point[0], point[1], self._base_ring.one())) # direction_vector pushed to infinity ee = self._V3( (direction_vector[0], direction_vector[1], self._base_ring.zero()) ) l2 = pp.cross_product(ee) # This is the point we want to return rr = l1.cross_product(l2) try: return self._V2((rr[0] / rr[2], rr[1] / rr[2])) except ZeroDivisionError: raise ValueError( "Division by zero error. Perhaps direction is zero. " + "point=" + str(point) + " direction=" + str(direction_vector) + " circle=" + str(self) )
[docs] def line_position(self, point, direction_vector): r""" Consider the line through the provided point in the given direction. We return 1 if the line passes through the circle, 0 if it is tangent to the circle and -1 if the line does not intersect the circle. """ return self.point_position(self.closest_point_on_line(point, direction_vector))
[docs] def line_segment_position(self, p, q): r""" Consider the open line segment pq.We return 1 if the line segment enters the interior of the circle, zero if it touches the circle tangentially (at a point in the interior of the segment) and and -1 if it does not touch the circle or its interior. """ if self.point_position(p) == 1: return 1 if self.point_position(q) == 1: return 1 r = self.closest_point_on_line(p, q - p) pos = self.point_position(r) if pos == -1: return -1 # This checks if r lies in the interior of pq if p[0] == q[0]: if (p[1] < r[1] and r[1] < q[1]) or (p[1] > r[1] and r[1] > q[1]): return pos elif (p[0] < r[0] and r[0] < q[0]) or (p[0] > r[0] and r[0] > q[0]): return pos # It does not lie in the interior. return -1
[docs] def tangent_vector(self, point): r""" Return a vector based at the provided point (which must lie on the circle) which is tangent to the circle and points in the counter-clockwise direction. EXAMPLES:: sage: from flatsurf.geometry.circle import Circle sage: c=Circle(vector((0,0)), 2, base_ring=QQ) sage: c.tangent_vector(vector((1,1))) (-1, 1) """ if not self.point_position(point) == 0: raise ValueError("point not on circle.") return vector((self._center[1] - point[1], point[0] - self._center[0]))
[docs] def other_intersection(self, p, v): r""" Consider a point p on the circle and a vector v. Let L be the line through p in direction v. Then L intersects the circle at another point q. This method returns q. Note that if p and v are both in the field of the circle, then so is q. EXAMPLES:: sage: from flatsurf.geometry.circle import Circle sage: c=Circle(vector((0,0)), 25, base_ring=QQ) sage: c.other_intersection(vector((3,4)),vector((1,2))) (-7/5, -24/5) """ pp = self._V3((p[0], p[1], self._base_ring.one())) vv = self._V3((v[0], v[1], self._base_ring.zero())) L = pp.cross_product(vv) cc = self._V3((self._center[0], self._center[1], self._base_ring.one())) vvperp = self._V3((-v[1], v[0], self._base_ring.zero())) # line perpendicular to L through center: Lperp = cc.cross_product(vvperp) # intersection of L and Lperp: rr = L.cross_product(Lperp) r = self._V2((rr[0] / rr[2], rr[1] / rr[2])) return self._V2((2 * r[0] - p[0], 2 * r[1] - p[1]))
def __rmul__(self, similarity): r""" Apply a similarity to the circle. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: s = translation_surfaces.square_torus() sage: c = s.polygon(0).circumscribed_circle() sage: c Circle((1/2, 1/2), 1/2) sage: s.edge_transformation(0,2) (x, y) |-> (x, y - 1) sage: s.edge_transformation(0,2) * c Circle((1/2, -1/2), 1/2) """ from .similarity import SimilarityGroup SG = SimilarityGroup(self._base_ring) s = SG(similarity) return Circle( s(self._center), s.det() * self._radius_squared, base_ring=self._base_ring ) def __str__(self): return ( "circle with center " + str(self._center) + " and radius squared " + str(self._radius_squared) ) def __repr__(self): return "Circle(" + repr(self._center) + ", " + repr(self._radius_squared) + ")" def __hash__(self): r""" Return a hash value for this circle that is compatible with :meth:`__eq__`. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus().triangulate().codomain().relabel() sage: hash(S.polygon(0).circumscribed_circle()) == hash(S.polygon(1).circumscribed_circle()) True """ return hash((self._center, self._radius_squared)) def __eq__(self, other): r""" Return whether this circle is indistinguishable from ``other``. EXAMPLES:: sage: from flatsurf import translation_surfaces sage: S = translation_surfaces.square_torus().triangulate().codomain().relabel() sage: S.polygon(0).circumscribed_circle() == S.polygon(1).circumscribed_circle() True """ if not isinstance(other, Circle): return False return ( self._center == other._center and self._radius_squared == other._radius_squared )