r"""
The category of polyogons
This module provides shared functionality for all polygons in sage-flatsurf.
See :mod:`flatsurf.geometry.categories` for a general description of the
category framework in sage-flatsurf.
Normally, you won't create this (or any other) category directly. The correct
category of a polygon is automatically determined.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ)
sage: from flatsurf import polygons
sage: polygons.square() in C
True
"""
# ****************************************************************************
# This file is part of sage-flatsurf.
#
# Copyright (C) 2016-2020 Vincent Delecroix
# 2020-2023 Julian Rüth
#
# sage-flatsurf is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# sage-flatsurf is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
# ****************************************************************************
from sage.misc.cachefunc import cached_method
from sage.categories.category_types import Category_over_base_ring
from sage.categories.category_with_axiom import (
CategoryWithAxiom_over_base_ring,
all_axioms,
)
from sage.misc.abstract_method import abstract_method
from sage.categories.all import Sets
[docs]
class Polygons(Category_over_base_ring):
r"""
The category of polygons defined over a base ring.
This comprises arbitrary base ring, e.g., this category contains Euclidean
polygons and hyperbolic polygons.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: Polygons(QQ)
Category of polygons over Rational Field
"""
[docs]
def super_categories(self):
r"""
Return the categories polygons automatically belong to.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ)
sage: C.super_categories()
[Category of sets]
"""
return [Sets()]
@staticmethod
def _describe_polygon(num_edges, **kwargs):
r"""
Return a printable description of a polygon with ``num_edges`` edges
and additional features encoded as keyword arguments.
The returned strings form a triple (indeterminate article, singular, plural).
Usually, you don't call this method directly, but
:meth:`Polygons.ParentMethods.describe_polygon`.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: Polygons._describe_polygon(3)
('a', 'triangle', 'triangles')
sage: Polygons._describe_polygon(3, equiangular=True, equilateral=True)
('an', 'equilateral triangle', 'equilateral triangles')
sage: Polygons._describe_polygon(9, equiangular=True, equilateral=True)
('a', 'regular nonagon', 'regular nonagons')
sage: Polygons._describe_polygon(4, equiangular=False, equilateral=True)
('a', 'rhombus', 'rhombi')
sage: Polygons._describe_polygon(64, equiangular=False, equilateral=False)
('a', '64-gon', '64-gons')
"""
from sage.all import infinity
# From https://en.wikipedia.org/wiki/Polygon#Naming
ngon_names = {
1: ("a", "monogon"),
2: ("a", "digon"),
3: ("a", "triangle"),
4: ("a", "quadrilateral"),
5: ("a", "pentagon"),
6: ("a", "hexagon"),
7: ("a", "heptagon"),
8: ("an", "octagon"),
9: ("a", "nonagon"),
10: ("a", "decagon"),
11: ("a", "hendecagon"),
12: ("a", "dodecagon"),
13: ("a", "tridecagon"),
14: ("a", "tetradecagon"),
15: ("a", "pentadecagon"),
16: ("a", "hexadecagon"),
17: ("a", "heptadecagon"),
18: ("an", "octadecagon"),
19: ("an", "enneadecagon"),
20: ("an", "icosagon"),
# Most people probably don't know the prefixes after that. We
# keep a few easy/fun ones.
100: ("a", "hectogon"),
1000: ("a", "chiliagon"),
10000: ("a", "myriagon"),
1000000: ("a", "megagon"),
infinity: ("an", "apeirogon"),
}
description = ngon_names.get(num_edges, ("a", f"{num_edges}-gon"))
description = description + (description[1] + "s",)
def augment(article, *attributes):
nonlocal description
description = (
article,
" ".join(attributes + (description[1],)),
" ".join(attributes + (description[2],)),
)
def augment_if(article, attribute, *properties):
if all(
kwargs.get(property, False) for property in (properties or [attribute])
):
augment(article, attribute)
return True
return False
def augment_if_not(article, attribute, *properties):
if all(
kwargs.get(property, True) is False
for property in (properties or [attribute])
):
augment(article, attribute)
return True
return False
if augment_if("a", "degenerate"):
return description
if num_edges == 3:
if not augment_if("an", "equilateral", "equiangular"):
if not augment_if("an", "isosceles"):
augment_if("a", "right")
return description
if num_edges == 4:
if kwargs.get("equilateral", False) and kwargs.get("equiangular", False):
return "a", "square", "squares"
if kwargs.get("equiangular", False):
return "a", "rectangle", "rectangles"
if kwargs.get("equilateral", False):
return "a", "rhombus", "rhombi"
augment_if("a", "regular", "equilateral", "equiangular")
augment_if_not("a", "non-convex", "convex")
marked_vertices = kwargs.get("marked_vertices", 0)
if marked_vertices:
if marked_vertices == 1:
suffix = "with a marked vertex"
else:
suffix = f"with {kwargs.get('marked_vertices')} marked vertices"
description = (
description[0],
f"{description[1]} {suffix}",
f"{description[2]} {suffix}",
)
return description
[docs]
class ParentMethods:
r"""
Provides methods available to all polygons.
If you want to add functionality to all polygons, independent of
implementation, you probably want to put it here.
"""
[docs]
@abstract_method
def change_ring(self, ring):
r"""
Return a copy of this polygon which is defined over ``ring``.
EXAMPLES::
sage: from flatsurf import polygons
sage: S = polygons.square()
sage: K.<sqrt2> = NumberField(x^2 - 2, embedding=AA(2)**(1/2))
sage: S.change_ring(K)
Polygon(vertices=[(0, 0), (1, 0), (1, 1), (0, 1)])
"""
[docs]
@abstract_method
def is_convex(self, strict=False):
r"""
Return whether this is a convex polygon.
INPUT:
- ``strict`` -- whether to check for strict convexity, i.e., a
polygon with a π angle is not considered convex.
EXAMPLES::
sage: from flatsurf import polygons
sage: S = polygons.square()
sage: S.is_convex()
True
sage: S.is_convex(strict=True)
True
"""
[docs]
@abstract_method
def is_degenerate(self):
r"""
Return whether this polygon is considered degenerate.
EXAMPLES:
Polygons with zero area are considered degenerate::
sage: from flatsurf import Polygon
sage: p = Polygon(vertices=[(0, 0), (2, 0), (1, 0)], check=False)
sage: p.is_degenerate()
True
Polygons with marked vertices are considered degenerate::
sage: from flatsurf import Polygon
sage: p = Polygon(vertices=[(0, 0), (2, 0), (4, 0), (2, 2)])
sage: p.is_degenerate()
True
"""
[docs]
@abstract_method
def is_simple(self):
r"""
Return whether this polygon is not self-intersecting.
EXAMPLES::
sage: from flatsurf import polygons
sage: s = polygons.square()
sage: s.is_simple()
True
"""
[docs]
def base_ring(self):
r"""
Return the ring over which this polygon is defined.
EXAMPLES::
sage: from flatsurf import polygons
sage: S = polygons.square()
sage: S.base_ring()
Rational Field
"""
return self.category().base_ring()
[docs]
def describe_polygon(self):
r"""
Return a textual description of this polygon for generating
human-readable messages.
The description is returned as a triple (indeterminate article,
singular, plural).
EXAMPLES::
sage: from flatsurf import polygons
sage: s = polygons.square()
sage: s.describe_polygon()
('a', 'square', 'squares')
"""
marked_vertices = set(self.vertices()).difference(
self.vertices(marked_vertices=False)
)
if marked_vertices and self.area() != 0:
self = self.erase_marked_vertices()
properties = {
"degenerate": self.is_degenerate(),
"equilateral": self.is_equilateral(),
"equiangular": self.is_equiangular(),
"convex": self.is_convex(),
"marked_vertices": len(marked_vertices),
}
if len(self.vertices()) == 3:
slopes = self.slopes(relative=True)
properties["right"] = any(slope[0] == 0 for slope in slopes)
from flatsurf.geometry.euclidean import is_parallel
properties["isosceles"] = (
is_parallel(slopes[0], slopes[1])
or is_parallel(slopes[0], slopes[2])
or is_parallel(slopes[1], slopes[2])
)
return Polygons._describe_polygon(len(self.vertices()), **properties)
def _test_refined_category(self, **options):
r"""
Verify that the polygon is in the smallest category that can be
easily determined.
EXAMPLES::
sage: from flatsurf import polygons
sage: P = polygons.square()
sage: P._test_refined_category()
"""
tester = self._tester(**options)
if self.is_convex():
tester.assertTrue("Convex" in self.category().axioms())
if self.is_simple():
tester.assertTrue("Simple" in self.category().axioms())
# We do not test for Rational and WithAngles since these are only
# determined on demand (computing angles can be very costly).
[docs]
class Convex(CategoryWithAxiom_over_base_ring):
r"""
The axiom satisfied by convex polygons.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ)
sage: C.Convex()
Category of convex polygons over Rational Field
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all convex polygons.
If you want to add functionality to all such polygons, you probably
want to put it here.
"""
[docs]
def is_convex(self, strict=False):
r"""
Return whether this is a convex polygon, which it is.
EXAMPLES::
sage: from flatsurf import polygons
sage: P = polygons.square()
sage: P.is_convex()
True
"""
if strict:
raise NotImplementedError(
"cannot decide strict convexity for this polygon yet"
)
return True
[docs]
class Simple(CategoryWithAxiom_over_base_ring):
r"""
The axiom satisfied by polygons that are not self-intersecting.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ)
sage: C.Simple()
Category of simple polygons over Rational Field
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all simple polygons.
If you want to add functionality to all such polygons, you probably
want to put it here.
"""
[docs]
def is_simple(self):
r"""
Return whether this polygon is not self-intersecting, i.e.,
return ``True``.
EXAMPLES::
sage: from flatsurf import polygons
sage: s = polygons.square()
sage: s.is_simple()
True
"""
return True
[docs]
class Rational(CategoryWithAxiom_over_base_ring):
r"""
The axiom satisfied by polygons whose inner angles are rational
multiples of π.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ)
sage: C.Rational()
Category of rational polygons over Rational Field
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all rational polygons.
If you want to add functionality to all such polygons, you probably
want to put it here.
"""
[docs]
def is_rational(self):
r"""
Return whether all inner angles of this polygon are rational
multiples of π, i.e., return ``True``.
EXAMPLES::
sage: from flatsurf import polygons
sage: s = polygons.square()
sage: s.is_rational()
True
"""
return True
[docs]
class SubcategoryMethods:
[docs]
def Convex(self):
r"""
Return the subcategory of convex polygons.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: Polygons(QQ).Convex()
Category of convex polygons over Rational Field
"""
return self._with_axiom("Convex")
[docs]
def Simple(self):
r"""
Return the subcategyr of simple polygons.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: Polygons(QQ).Simple()
Category of simple polygons over Rational Field
"""
return self._with_axiom("Simple")
[docs]
def Rational(self):
r"""
Return the subcategory of polygons with rational angles.
EXAMPLES::
sage: from flatsurf.geometry.categories import Polygons
sage: Polygons(QQ).Rational()
Category of rational polygons over Rational Field
"""
return self._with_axiom("Rational")
[docs]
def field(self):
r"""
Return the field over which these polygons are defined.
EXAMPLES::
sage: from flatsurf import Polygon
sage: P = Polygon(vertices=[(0,0),(1,0),(2,1),(-1,1)])
sage: P.category().field()
doctest:warning
...
UserWarning: field() has been deprecated and will be removed from a future version of sage-flatsurf; use base_ring() or base_ring().fraction_field() instead
Rational Field
"""
import warnings
warnings.warn(
"field() has been deprecated and will be removed from a future version of sage-flatsurf; use base_ring() or base_ring().fraction_field() instead"
)
return self.base_ring().fraction_field()
[docs]
@cached_method
def base_ring(self):
r"""
Return the ring over which the polygons in this category are
defined.
sage: from flatsurf.geometry.categories import Polygons
sage: C = Polygons(QQ).Rational().Simple().Convex()
sage: C.base_ring()
Rational Field
"""
# Copied this trick from SageMath's Modules category.
for C in self.super_categories():
if hasattr(C, "base_ring"):
return C.base_ring()
assert False
def _test_base_ring(self, **options):
tester = self._tester(**options)
from sage.categories.all import Rings
tester.assertTrue(self.base_ring() in Rings())
[docs]
def change_ring(self, ring):
r"""
Return this category but defined over the ring ``ring``.
EXAMPLES::
sage: from flatsurf import polygons
sage: s = polygons.square()
sage: C = s.category()
sage: C
Category of convex simple euclidean rectangles over Rational Field
sage: C.change_ring(AA)
Category of convex simple euclidean rectangles over Algebraic Real Field
"""
from sage.categories.category import JoinCategory
if isinstance(self, JoinCategory):
from sage.categories.category import Category
return Category.join(
[S.change_ring(ring) for S in self.super_categories()]
)
# This is a hack to make the change ring of EuclideanPolygonsWithAngles subcategories work
if hasattr(self, "angles"):
return type(self)(ring, self.angles())
if isinstance(self, Category_over_base_ring):
return type(self)(ring)
raise NotImplementedError("cannot change_ring() of this category yet")
# Currently, there is no "Convex" and "Simple" axiom in SageMath so we make it
# known to the category framework. Note that "Rational" is already defined by
# topological surfaces so we don't need to declare it here again.
all_axioms += (
"Convex",
"Simple",
)