r"""
The category of half-translation surfaces.
A half-translation surface is a surface built by gluing Euclidean polygons. The
sides of the polygons can be glued by translations or half-translations
(rotations by angle π).
See :mod:`flatsurf.geometry.categories` for a general description of the
category framework in sage-flatsurf.
Normally, you won't create this (or any other) category directly. The correct
category is automatically determined for immutable surfaces.
EXAMPLES:
We glue all the sides of a square to themselves. Since each gluing is just a
rotation by π, this is a half-translation surface::
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(vertices=[(0,0), (1,0), (1,1), (0,1)])
sage: S = similarity_surfaces.self_glued_polygon(P)
sage: S.set_immutable()
sage: C = S.category()
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: C.is_subcategory(HalfTranslationSurfaces())
True
"""
# ####################################################################
# This file is part of sage-flatsurf.
#
# Copyright (C) 2013-2019 Vincent Delecroix
# 2013-2019 W. Patrick Hooper
# 2023-2024 Julian Rüth
#
# sage-flatsurf is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# sage-flatsurf is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with sage-flatsurf. If not, see <https://www.gnu.org/licenses/>.
# ####################################################################
from flatsurf.geometry.categories.surface_category import (
SurfaceCategory,
SurfaceCategoryWithAxiom,
)
from sage.misc.lazy_import import LazyImport
from sage.all import QQ, AA
[docs]
class HalfTranslationSurfaces(SurfaceCategory):
r"""
The category of surfaces built by gluing (Euclidean) polygons with
translations and half-translations (rotations by angle π).
EXAMPLES::
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: HalfTranslationSurfaces()
Category of half translation surfaces
"""
[docs]
def super_categories(self):
r"""
Return the categories that a half-translation surface is always a
member of.
EXAMPLES::
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: HalfTranslationSurfaces().super_categories()
[Category of dilation surfaces, Category of rational cone surfaces]
"""
from flatsurf.geometry.categories.dilation_surfaces import DilationSurfaces
from flatsurf.geometry.categories.cone_surfaces import ConeSurfaces
return [DilationSurfaces(), ConeSurfaces().Rational()]
# Declare that the "positive" half-translation surfaces are called
# "translation surfaces".
Positive = LazyImport(
"flatsurf.geometry.categories.translation_surfaces", "TranslationSurfaces"
)
[docs]
class ParentMethods:
r"""
Provides methods available to all half-translation surfaces.
If you want to add functionality for such surfaces you most likely want
to put it here.
"""
[docs]
def is_translation_surface(self, positive=True):
r"""
Return whether this surface is a (half-)translation surface.
This overrides
:meth:`.similarity_surfaces.SimilaritySurfaces.ParentMethods.is_translation_surface`.
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: H.is_translation_surface(positive=False)
True
sage: H.is_translation_surface(positive=True)
False
"""
if not positive:
return True
# If this is not explicitly a translation surface, we have to
# decide with the generic checks whether it is a positive
# half-translation surface.
return super( # pylint: disable=bad-super-call
HalfTranslationSurfaces().parent_class, self
).is_translation_surface(positive=positive)
[docs]
class Orientable(SurfaceCategoryWithAxiom):
r"""
The category of orientable half-translation surfaces.
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: H in HalfTranslationSurfaces().Orientable()
True
"""
[docs]
class WithoutBoundary(SurfaceCategoryWithAxiom):
r"""
The category of orientable half-translation surfaces without boundary.
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: H in HalfTranslationSurfaces().Orientable().WithoutBoundary()
True
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all orientable half-translation
surfaces.
If you want to add functionality for such surfaces you most likely
want to put it here.
"""
[docs]
def stratum(self):
r"""
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: H.stratum()
Q_1(3, -1^3)
TESTS:
Verify that the stratum is correct for surfaces with self-glued edges::
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(vertices=[(0,0), (2,0), (1,4), (0,5)])
sage: S = similarity_surfaces.self_glued_polygon(P)
sage: S.stratum()
Q_0(0, -1^4)
"""
angles = self.angles()
for a, b in self.gluings():
if a == b:
angles.append(QQ(1 / 2))
if all(x.denominator() == 1 for x in angles):
raise NotImplementedError
from sage.all import ZZ
from surface_dynamics import Stratum
return Stratum(
sorted([ZZ(2 * a - 2) for a in angles], reverse=True), 2
)
[docs]
class Oriented(SurfaceCategoryWithAxiom):
r"""
The category of oriented half-translation surfaces, i.e., orientable
half-translation surfaces which can be oriented in a way compatible
with the embedding of their polygons in the real plane.
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: H in HalfTranslationSurfaces().Oriented()
True
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all oriented half-translation
surfaces.
If you want to add functionality for such surfaces you most likely
want to put it here.
"""
[docs]
def holonomy_field(self):
r"""
Return the relative holonomy field of this translation or half-translation surface.
EXAMPLES::
sage: from flatsurf import translation_surfaces, polygons, similarity_surfaces
sage: S = translation_surfaces.veech_2n_gon(5)
sage: S.holonomy_field()
Number Field in a0 with defining polynomial x^2 - x - 1 with a0 = ...
sage: S.base_ring()
Number Field in a with defining polynomial y^4 - 5*y^2 + 5 with a = 1.175570504584947?
sage: T = translation_surfaces.torus((1, AA(2).sqrt()), (AA(3).sqrt(), 3))
sage: T.holonomy_field()
Rational Field
sage: T = polygons.triangle(1,6,11)
sage: S = similarity_surfaces.billiard(T)
sage: S = S.minimal_cover("translation")
sage: S.base_ring()
Number Field in c with defining polynomial x^6 - 6*x^4 + 9*x^2 - 3 with c = 1.969615506024417?
sage: S.holonomy_field()
Number Field in c0 with defining polynomial x^3 - 3*x - 1 with c0 = 1.879385241571817?
"""
return self.normalized_coordinates()[0].base_ring()
def _test_half_translation_surface(self, **options):
r"""
Verify that this is a half-translation surface.
EXAMPLES::
sage: from flatsurf import Polygon, similarity_surfaces
sage: P = Polygon(vertices=[(0,0), (2,0), (1,4), (0,5)])
sage: S = similarity_surfaces.self_glued_polygon(P)
sage: S._test_half_translation_surface()
"""
tester = self._tester(**options)
limit = None
if not self.is_finite_type():
from flatsurf import MutableOrientedSimilaritySurface
self = MutableOrientedSimilaritySurface.from_surface(
self, labels=self.labels()[:32]
)
from flatsurf.geometry.categories import TranslationSurfaces
tester.assertTrue(
TranslationSurfaces.ParentMethods._is_translation_surface(
self, positive=False, limit=limit
)
)
[docs]
class FiniteType(SurfaceCategoryWithAxiom):
r"""
The category of oriented half-translation surfaces built from
finitely many polygons.
EXAMPLES::
sage: from flatsurf import polygons, similarity_surfaces
sage: B = similarity_surfaces.billiard(polygons.triangle(1, 2, 5))
sage: H = B.minimal_cover(cover_type="half-translation")
sage: from flatsurf.geometry.categories import HalfTranslationSurfaces
sage: H in HalfTranslationSurfaces().Oriented().FiniteType()
True
"""
[docs]
class ParentMethods:
r"""
Provides methods available to all oriented half-translation
surfaces built from finitely many polygons.
If you want to add functionality for such surfaces you most
likely want to put it here.
"""
[docs]
def normalized_coordinates(self):
r"""
Return a pair ``(new_surface, matrix)`` where ``new_surface`` is defined over the
holonomy field and ``matrix`` is the transition matrix that maps this surface to
``new_surface``.
EXAMPLES::
sage: from flatsurf import translation_surfaces, polygons, similarity_surfaces
sage: S = translation_surfaces.veech_2n_gon(5)
sage: U, mat = S.normalized_coordinates()
sage: U.base_ring()
Number Field in a0 with defining polynomial x^2 - x - 1 with a0 = ...
sage: mat
[ 0 -2/5*a^3 + 2*a]
[ -1 -3/5*a^3 + 2*a]
sage: T = translation_surfaces.torus((1, AA(2).sqrt()), (AA(3).sqrt(), 3))
sage: U, mat = T.normalized_coordinates()
sage: U.base_ring()
Rational Field
sage: U.holonomy_field()
Rational Field
sage: mat
[-2.568914100752347? 1.816496580927726?]
[-5.449489742783178? 3.146264369941973?]
sage: TestSuite(U).run()
sage: T = polygons.triangle(1,6,11)
sage: S = similarity_surfaces.billiard(T)
sage: S = S.minimal_cover("translation")
sage: U, _ = S.normalized_coordinates()
sage: U.base_ring()
Number Field in c0 with defining polynomial x^3 - 3*x - 1 with c0 = 1.879385241571817?
sage: U.holonomy_field() == U.base_ring()
True
sage: S.base_ring()
Number Field in c with defining polynomial x^6 - 6*x^4 + 9*x^2 - 3 with c = 1.969615506024417?
sage: TestSuite(U).run()
sage: from flatsurf import EuclideanPolygonsWithAngles
sage: polygons = EuclideanPolygonsWithAngles((1, 3, 1, 1))
sage: p = polygons.an_element()
sage: B = similarity_surfaces.billiard(p)
sage: B.minimal_cover("translation")
Minimal Translation Cover of Genus 0 Rational Cone Surface built from 2 equilateral triangles
sage: S = B.minimal_cover("translation")
sage: S, _ = S.normalized_coordinates()
sage: S
Translation Surface in H_1(0^6) built from 6 right triangles
TESTS:
Verify that #89 has been resolved::
sage: from pyexactreal import ExactReals # optional: pyexactreal # random output due to pkg_resources deprecation warnings
sage: from flatsurf import translation_surfaces
sage: S = translation_surfaces.square_torus()
sage: S = S.change_ring(ExactReals()) # optional: pyexactreal
sage: S.normalized_coordinates() # optional: pyexactreal
Traceback (most recent call last):
...
NotImplementedError: base ring must be a field to normalize coordinates of the surface
"""
from sage.all import matrix
if self.base_ring() is QQ:
return (self, matrix(QQ, 2, 2, 1))
from sage.categories.all import Fields
if self.base_ring() not in Fields():
raise NotImplementedError(
"base ring must be a field to normalize coordinates of the surface"
)
lab = next(iter(self.labels()))
p = self.polygon(lab)
u = p.edge(1)
v = -p.edge(0)
i = 1
from flatsurf.geometry.euclidean import ccw
while ccw(u, v) == 0:
i += 1
u = p.edge(i)
v = -p.edge(i - 1)
M = matrix(2, [u, v]).transpose().inverse()
assert M.det() > 0
hols = []
for lab in self.labels():
p = self.polygon(lab)
for e in range(len(p.vertices())):
w = M * p.edge(e)
hols.append(w[0])
hols.append(w[1])
if self.base_ring() is AA:
from flatsurf.geometry.subfield import (
number_field_elements_from_algebraics,
)
K, new_hols = number_field_elements_from_algebraics(hols)
else:
from flatsurf.geometry.subfield import subfield_from_elements
K, new_hols, _ = subfield_from_elements(self.base_ring(), hols)
from flatsurf.geometry.polygon import Polygon
from flatsurf.geometry.surface import (
MutableOrientedSimilaritySurface,
)
S = MutableOrientedSimilaritySurface(K)
relabelling = {}
k = 0
for lab in self.labels():
m = len(self.polygon(lab).vertices())
relabelling[lab] = S.add_polygon(
Polygon(
edges=[
(new_hols[k + 2 * i], new_hols[k + 2 * i + 1])
for i in range(m)
],
base_ring=K,
)
)
k += 2 * m
for (p1, e1), (p2, e2) in self.gluings():
S.glue((relabelling[p1], e1), (relabelling[p2], e2))
S._refine_category_(self.category())
return S, M