Source code for surface_dynamics.topology.fat_graph

r"""
Fat graph.

"""
# ****************************************************************************
#       Copyright (C) 2019-2023 Vincent Delecroix <20100.delecroix@gmail.com>
#
#  Distributed under the terms of the GNU General Public License (GPL)
#  as published by the Free Software Foundation; either version 2 of
#  the License, or (at your option) any later version.
#                  https://www.gnu.org/licenses/
# ****************************************************************************

import numbers

from sage.rings.integer_ring import ZZ
from sage.rings.rational_field import QQ

from collections import deque
from surface_dynamics.misc.permutation import (perm_compose, perm_conjugate, perm_conjugate_inplace,
                                               perm_dense_cycles, constellation_init,
                                               perm_num_cycles, perm_on_list_inplace, perm_orbit,
                                               perm_from_base64_str, perm_base64_str,
                                               perm_check, perm_cycle_string, perm_hash,
                                               perm_cycles, perm_cycle_type, perm_invert,
                                               perm_is_regular, perm_is_on_list_stabilizer, PermutationGroupOrbit, perms_are_transitive, perms_transitive_components)


###########################
# Miscellaneous functions #
###########################


[docs] def num_and_weighted_num(it): s = QQ.zero() n = ZZ.zero() for _, aut in it: n += ZZ.one() if aut is None: s += QQ.one() else: s += QQ((1, aut.group_cardinality())) return n, s
[docs] def list_extrems(l, n): """ EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import list_extrems sage: list_extrems([3,5,3,17,7,2,1,19],4) (3, 17) """ if not n: raise ValueError vdmin = vdmax = l[0] for i in range(1, n): if l[i] > vdmax: vdmax = l[i] elif l[i] < vdmin: vdmin = l[i] return (vdmin, vdmax)
[docs] class FatGraph(object): r""" Fat graph or graph embedded in an orientable surface. A fat graph is a graph embedded in an orientable surface. It is encoded as a pair of permutations ``vp`` (for vertex permutation) and ``fp`` (for face permutation). The encoding is done by first associating an integer to each oriented edge such that the orientation reversing maps is `0 \leftrightarrow 1`, `2 \leftrightarrow 3`, etc. Then the vertex permutation is the permutation of the oriented edge which corresponds to move counterclockwise to the next outgoing edge at each vertex. The face permutation is the permutation of the oriented edge which corresponds to follow the arrow inside the face on its left side (so that faces also run counterclockwise). EXAMPLES: The once punctured torus:: sage: from surface_dynamics import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: FatGraph(vp, fp) FatGraph('(0,2,1,3)', '(0,2,1,3)') Actually it is enough to specify one of the vertex permutation or face permutation as one determines the other:: sage: vp = '(0,3,1)(4)(2,5,6,7)' sage: fp = '(0,3,7,5,4,2)(1)(6)' sage: F0 = FatGraph(vp=vp, fp=fp) sage: F1 = FatGraph(fp=fp) sage: F2 = FatGraph(vp=vp, fp=fp) sage: F3 = FatGraph(vp=vp) sage: F0 == F1 and F0 == F2 and F0 == F3 True """ __slots__ = ['_n', # number of darts (non-negative integer) '_mutable', # mutability flag # permutations '_vp', # vertex permutation (array of length _n) '_fp', # face permutation (array of length _n) # labels (identify uniquely the vertices) '_vl', # vertex labels (array of length _n) '_fl', # face labels (array of length _n) # numbers '_nv', # number of vertices (non-negative integer) '_nf', # number of faces (non-negative integer) # degrees '_vd', # vertex degrees (array of length _nv) containing integers from 0 to nv - 1 '_fd'] # face degrees (array of length _nf) containing integers from 0 to nf - 1 def __init__(self, vp=None, fp=None, max_num_dart=None, mutable=False, check=True): vp, _, fp = constellation_init(vp, 2, fp) self._vp = vp self._fp = fp if len(vp) != len(fp): raise ValueError("invalid permutations") self._n = len(vp) # number of darts self._nf = 0 # number of faces self._vl, self._vd = perm_dense_cycles(vp, self._n) self._nv = len(self._vd) # number of vertices self._vd.extend([-1] * (self._n - self._nv)) self._fl, self._fd = perm_dense_cycles(fp, self._n) self._nf = len(self._fd) # number of faces self._fd.extend([-1] * (self._n - self._nf)) self._mutable = bool(mutable) if max_num_dart is not None: if max_num_dart < self._n: raise ValueError('invalid argument max_num_dart') self._realloc(max_num_dart) if check: self._check()
[docs] @staticmethod def from_unicellular_word(w): r""" Build a fat graph from a word on the letters {0, ..., n-1} where each letter appears exactly twice. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: FatGraph.from_unicellular_word([0,1,0,2,3,4,1,4,3,2]) FatGraph('(0,4)(1,3,9,2)(5,6)(7,8)', '(0,2,1,4,6,8,3,9,7,5)') sage: FatGraph.from_unicellular_word([0,1,2,0,3,2,4,1,3,4]) FatGraph('(0,8,4,3,9,6)(1,5,7,2)', '(0,2,4,1,6,5,8,3,7,9)') """ # edge 0 is relabelled (0,1), edge 1 is relabelled (2,3), etc n = len(w) m = n // 2 fp = [None] * n seen = [0] * m previous = 2 * w[-1] + 1 for k in w: if not 0 <= k < n: raise ValueError('invalid unicellular word') if seen[k] == 0: # first time we see an edge it is labelled 0, 2, 4, ... fp[previous] = previous = 2*k seen[k] = True elif seen[k] == 1: # twins get labelled 1, 3, 5, ... fp[previous] = previous = 2*k + 1 else: raise ValueError('invalid unicellular word') # consistency check assert previous == 2 * w[-1] + 1 return FatGraph(fp=fp)
[docs] @staticmethod def from_string(s): r""" Build a fat graph from a serialized string. See also :meth:`to_string`. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: s = '20_i31027546b98jchedfag_23146758ab9igdhfejc0' sage: F = FatGraph.from_string(s) sage: F.to_string() == s True sage: FatGraph.from_string('0__') FatGraph('()', '()') """ if not isinstance(s, str) or s.count('_') != 2: raise ValueError("invalid input") n, vp, fp = s.split('_') n = int(n) vp = perm_from_base64_str(vp, n) fp = perm_from_base64_str(fp, n) return FatGraph(vp, fp)
def _check(self, error=RuntimeError): vp = self._vp vl = self._vl vd = self._vd fp = self._fp fl = self._fl fd = self._fd n = self._n nf = self._nf nv = self._nv if any(vp[i] == -1 or fp[i] == -1 for i in range(n)): raise ValueError('inactive dart not allowed') if not perm_check(vp, n): raise ValueError("invalid vertex permutation: %s" % vp) if not perm_check(fp, n): raise ValueError("invalid face permutation: %s" % fp) if n and (perm_num_cycles(vp, n) != nv): raise error("wrong number of vertices: nv={} vp={}".format(nv, perm_cycle_string(vp, True, n))) if n and (perm_num_cycles(fp, n) != nf): raise error("wrong number of faces: nf={} fp={}".format(nf, perm_cycle_string(fp, True, n))) if len(vl) < n or len(fl) < n or len(vd) < n or len(fd) < n: raise error("inconsistent lengths") if any(x < 0 or x > n for x in vd[:nv]): raise error("invalid vertex degrees") if any(x < 0 or x > n for x in fd[:nf]): raise error("invalid face degrees") if n == 0: # the graph with no edge is a bit special as we consider it to be the sphere # minus a point (= a disk) if nv > 1 or nf > 1: raise ValueError('the fat graph with no edge has a single vertex and a single face (nv={}, nf={})'.format(nv, nf)) return for i in range(n): if fp[vp[i] ^ 1] != i: raise error("fp[ep[vp[%d]]] = %d" % (i, fp[vp[i] ^ 1])) ffd = [0] * nf vvd = [0] * nv if set(vl[:n]) != set(range(nv)): raise ValueError('invalid vertex labels: {} (n={}, nv={})'.format(sorted(set(vl[:n])), n, nv)) if set(fl[:n]) != set(range(nf)): raise ValueError('invalid face labels: {} (n={}, nf={})'.format(sorted(set(fl[:n])), n, nf)) for i in range(n): if fl[i] < 0 or fl[i] >= nf: raise error("face label out of range: fl[%d] = %d" % (i, fl[i])) if vl[i] < 0 or vl[i] >= nv: raise error("vertex label out of range: vl[%d] = %d" % (i, vl[i])) if fl[fp[i]] != fl[i]: raise error("fl[fp[%d]] = %d while fl[%d] = %d" % (i, fl[fp[i]], i, fl[i])) if vl[vp[i]] != vl[i]: raise error("vl[vp[%d]] = vl[%d] = %d while vl[%d] = %d" % (i, vp[i], vl[vp[i]], i, vl[i])) ffd[fl[i]] += 1 vvd[vl[i]] += 1 if vvd != vd[:nv]: raise error("inconsistent vertex labels/degrees, got %s instead of vd = %s" % (vvd, vd[:nv])) if ffd != fd[:nf]: raise error("inconsistent face labels/degrees, got %s instead of fd = %s" % (ffd, fd[:nf])) def _check_dart(self, i): if not isinstance(i, numbers.Integral) or i < 0: raise TypeError('dart must be a non-negative integer, got i=%d' % i) i = int(i) if i >= self._n: raise ValueError('dart i=%d out of range' % i) return i def __hash__(self): if self._mutable: raise TypeError("mutable FatGraph not hashable") return perm_hash(self._vp) ^ (13522761 * perm_hash(self._fp)) def _realloc(self, max_num_dart): if max_num_dart < self._n: return self._vp.extend([-1] * (max_num_dart - self._n)) self._fp.extend([-1] * (max_num_dart - self._n)) self._vl.extend([-1] * (max_num_dart - self._n)) self._fl.extend([-1] * (max_num_dart - self._n)) self._vd.extend([-1] * (max_num_dart - self._n)) self._fd.extend([-1] * (max_num_dart - self._n))
[docs] def is_connected(self): r""" Return whether the graph is connected. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph(vp='(0,2)(1,3)').is_connected() True sage: FatGraph(vp='(0,1)(2,3)').is_connected() False """ return perms_are_transitive([self._vp, self._fp], self._n)
[docs] def connected_components(self): r""" Return the list of connected components. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph(vp='(0,2)(1,3)').connected_components() [FatGraph('(0,2)(1,3)', '(0,3)(1,2)')] sage: FatGraph(vp='(0,1)(2,3)').connected_components() [FatGraph('(0,1)', '(0)(1)'), FatGraph('(0,1)', '(0)(1)')] """ ccs = perms_transitive_components([self._vp, self._fp], self._n) if len(ccs) == 1 and not self._mutable: return [self] # build a FatGraph for each connected component connected_graphs = [] for cc in ccs: relabel = {j: i for i, j in enumerate(cc)} vp = [-1] * len(cc) fp = [-1] * len(cc) for j in cc: vp[relabel[j]] = relabel[self._vp[j]] fp[relabel[j]] = relabel[self._fp[j]] connected_graphs.append(FatGraph(vp, fp)) return connected_graphs
[docs] def disjoint_union(self, *args, mutable=False): r""" Return the union of ``self`` with the graphs provided as arguments. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: fg0 = FatGraph('(0,4,2,5)(1,6)(3,7)') sage: fg1 = FatGraph('(0,3,5)(1,2,4)') sage: fg2 = FatGraph('(0,1)') sage: fg = fg0.disjoint_union(fg1, fg2) sage: fg FatGraph('(0,4,2,5)(1,6)(3,7)(8,11,13)(9,10,12)(14,15)', '(0,6,3,4,2,7,1,5)(8,12,11,9,13,10)(14)(15)') sage: fg.connected_components() [FatGraph('(0,4,2,5)(1,6)(3,7)', '(0,6,3,4,2,7,1,5)'), FatGraph('(0,3,5)(1,2,4)', '(0,4,3,1,5,2)'), FatGraph('(0,1)', '(0)(1)')] """ if not args: if not self._mutable and not mutable: return self else: return self.copy(mutable=mutable) shifts = [self._n] for fg in args: shifts.append(shifts[-1] + fg._n) n = shifts[-1] vp = list(self._vp[:self._n]) + [-1] * (n - self._n) fp = list(self._fp[:self._n]) + [-1] * (n - self._n) for fg, shift in zip(args, shifts): for i in range(fg._n): vp[shift + i] = shift + fg._vp[i] fp[shift + i] = shift + fg._fp[i] return FatGraph(vp, fp)
[docs] def edge_flip(self, i): r""" Return the half-edge that together with ``i`` makes an edge. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: F = FatGraph('(0,2,1,3)') sage: F.edge_flip(0) 1 sage: F.edge_flip(1) 0 sage: F.edge_flip(4) Traceback (most recent call last): ... ValueError: dart i=4 out of range """ i = self._check_dart(i) return int(i) ^ 1
[docs] def darts(self): r""" Iterator through the list of darts. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: list(FatGraph('(0,3,5)(1,4,2)').darts()) [0, 1, 2, 3, 4, 5] """ return range(self._n)
[docs] def copy(self, mutable=None): """ Return a copy of this fat graph. INPUT: - ``mutable`` -- (optional) whether the copy must be mutable EXAMPLES:: sage: from surface_dynamics import FatGraph sage: F = FatGraph.from_unicellular_word([0,1,0,2,3,4,1,4,3,2]) sage: G = F.copy() sage: G._check() """ if mutable is None: mutable = self._mutable elif not isinstance(mutable, bool): raise TypeError('argument mutable must be a boolean') if not mutable and not self._mutable: # no need to duplicate immutable graphs return self F = FatGraph.__new__(FatGraph) F._n = self._n F._vp = self._vp[:] F._fp = self._fp[:] F._nf = self._nf F._nv = self._nv F._vl = self._vl[:] F._vd = self._vd[:] F._fl = self._fl[:] F._fd = self._fd[:] F._mutable = mutable return F
__copy__ = copy
[docs] def to_string(self): r""" Serialization to string. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: FatGraph.from_unicellular_word([0,1,0,2,3,4,1,4,3,2]).to_string() '10_4319065872_2419608537' sage: FatGraph('', '').to_string() '0__' """ n = self._n return str(n) + "_" + \ perm_base64_str(self._vp, n) + "_" + \ perm_base64_str(self._fp, n)
def _symmetric_group(self): r""" Underlying symmetric group. """ from sage.groups.perm_gps.permgroup_named import SymmetricGroup return SymmetricGroup([i for i in range(self._n) if self._vp[i] != -1])
[docs] def monodromy_group(self): r""" Return the group generated by the vertex and face permutations. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: r1 = FatGraph('(0)(2)(1,3,4,5)') sage: G1 = r1.monodromy_group() sage: G1 Subgroup ... sage: G1.is_isomorphic(SymmetricGroup(5)) True sage: r2 = FatGraph('(0)(2)(1,3,4)(5,6,7)') sage: G2 = r2.monodromy_group() sage: G2 Subgroup ... sage: G2.is_isomorphic(PSL(2,7)) True """ S = self._symmetric_group() v = S([i for i in self._vp if i != -1]) f = S([i for i in self._fp if i != -1]) return S.subgroup([v, f])
[docs] def is_face_bipartite(self, certificate=False): r""" Return whether the faces admit a proper 2-coloring. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import * sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: F = FatGraph(vp, fp, 6, mutable=True) sage: F.is_face_bipartite() False sage: F.split_face(0, 1) sage: F.is_face_bipartite() True sage: vp = '(0,5,2,1,3,4)' sage: fp = '(0,2,1,4)(3,5)' sage: FatGraph(vp, fp).is_face_bipartite() False sage: from surface_dynamics import FatGraphs sage: F = FatGraphs(g=1, nf=3, nv=3, vertex_min_degree=3) sage: F.cardinality_and_weighted_cardinality(filter=lambda x,a: x.is_face_bipartite()) (3, 5/3) """ # trivial cases if self._nf == 0: return (True, []) if certificate else True elif self._nf == 1: return (False, None) if certificate else False n = self._n fp = self._fp fl = self._fl nf = self._nf colors = [-1] * nf seen = [False] * n root = 0 to_test = perm_orbit(fp, root) colors[self._fl[root]] = 1 while to_test: e1 = to_test.pop() if seen[e1]: continue e2 = e1 ^ 1 f1 = fl[e1] f2 = fl[e2] if colors[f1] == -1: raise RuntimeError elif colors[f2] == -1: # discover a new face colors[f2] = 1 - colors[f1] to_test.extend(perm_orbit(fp, e2)) elif colors[f1] == colors[f2]: # contradiction in colors return (False, None) if certificate else False seen[e1] = seen[e2] = True return (True, colors) if certificate else True
def __repr__(self): n = self._n fd = self._fd[:self._nf] vd = self._vd[:self._nv] fd.sort(reverse=True) vd.sort(reverse=True) return "FatGraph('%s', '%s')" % (perm_cycle_string(self._vp, True, n), perm_cycle_string(self._fp, True, n)) def __eq__(self, other): r""" TESTS:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: cm1 = FatGraph(vp, fp) sage: cm2 = FatGraph(vp, fp, 100) sage: cm1 == cm2 True """ if type(self) != type(other): raise TypeError if self._n != other._n or self._nf != other._nf or self._nv != other._nv: return False # here we ignore the vertex and face labels... return all(self._vp[i] == other._vp[i] and self._fp[i] == other._fp[i] for i in range(self._n)) def __ne__(self, other): return not self == other
[docs] def vertex_permutation(self, copy=True): r""" Return the vertex permutation as a list. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2)(1,5,3)').vertex_permutation() [4, 5, 0, 1, 2, 3] """ return self._vp[:self._n] if copy else self._vp
[docs] def face_permutation(self, copy=True): r""" Return the face permutation as a list. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2)(1,5,3)').face_permutation() [3, 2, 5, 4, 1, 0] """ return self._fp[:self._n] if copy else self._fp
[docs] def vertex_degrees(self): r""" Return the degree of vertices. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: FatGraph('(0,3)(1,2,5)(4)').vertex_degrees() [2, 3, 1] sage: FatGraph('()', '()').vertex_degrees() [0] """ return [0] if not self._n else self._vd[:self._nv]
[docs] def vertex_min_degree(self): return 0 if not self._n else min(self._vd[i] for i in range(self._nv))
[docs] def vertex_max_degree(self): return 0 if not self._n else max(self._vd[i] for i in range(self._nv))
[docs] def face_degrees(self): r""" EXAMPLES:: sage: from surface_dynamics import FatGraph sage: FatGraph('()', '()').face_degrees() [0] """ return [0] if not self._n else self._fd[:self._nf]
[docs] def face_min_degree(self): return 0 if not self._nf else min(self._fd[i] for i in range(self._nf))
[docs] def face_max_degree(self): return 0 if not self._nf else max(self._fd[i] for i in range(self._nf))
[docs] def profile(self): r""" Return the pair of vertex and face profiles. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').profile() ([6], [2, 4]) sage: FatGraph('()', '()').profile() ([0], [0]) """ return (self.vertex_degrees(), self.face_degrees())
[docs] def num_vertices(self): r""" Return the number of vertices. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').num_vertices() 1 sage: FatGraph('()', '()').num_vertices() 1 """ return 1 if not self._n else self._nv
[docs] def num_edges(self): r""" Return the number of edges. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').num_edges() 3 sage: FatGraph('()', '()').num_edges() 0 """ return self._n // 2
[docs] def num_faces(self): r""" Return the number of faces. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').num_faces() 2 sage: FatGraph('()', '()').num_faces() 1 """ return 1 if not self._n else self._nf
[docs] def vertices(self): r""" Return the vertices as a list of lists. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').vertices() [[0, 4, 2, 5, 1, 3]] """ return perm_cycles(self._vp, True, self._n)
[docs] def edges(self): r""" Return the edges. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').edges() [[0, 1], [2, 3], [4, 5]] """ return [[i, i ^ 1] for i in range(0, self._n, 2) if self._vp[i] != -1]
[docs] def faces(self): r""" Return the faces. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,2,5,1,3)', '(0,5)(1,3,4,2)').faces() [[0, 5], [1, 3, 4, 2]] """ return perm_cycles(self._fp, True, self._n)
[docs] def is_vertex_regular(self, d=None): r""" Return whether all vertices have the same degree. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,5,2,3)(1,6,7,4)').is_vertex_regular() True """ if d is not None: if not isinstance(d, numbers.Integral): raise TypeError('d must be integral') if d < 0: raise ValueError('d must be non-negative') return perm_is_regular(self._vp, d, self._n)
[docs] def is_face_regular(self, d=None): r""" Return whether all faces have the same degree. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph(fp='(0,5,2,3)(1,6,7,4)').is_face_regular() True """ if d is not None: if not isinstance(d, numbers.Integral): raise TypeError('d must be integral') if d < 0: raise ValueError('d must be non-negative') return perm_is_regular(self._fp, d, self._n)
[docs] def is_cubic(self): r""" Return whether all vertices have degree 3. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph('(0,4,1)(2,3,5)').is_cubic() True sage: FatGraph('(0,4,1)(2)(3)(5)').is_cubic() False """ return self.is_vertex_regular(3)
[docs] def is_triangulation(self): r""" Return whether the underlying graph is a triangulation. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: FatGraph(fp='(0,4,1)(2,3,5)').is_triangulation() True sage: FatGraph(fp='(0,4,1)(2)(3)(5)').is_triangulation() False """ return self.is_face_regular(3)
[docs] def genus(self): r""" Return the genus of this graph. If the graph is not connected, then the answer is the sum of the genera of the components. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp0 = '(0,4,2,5,1,3)' sage: fp0 = '(0,5)(1,3,4,2)' sage: cm0 = FatGraph(vp0, fp0) sage: cm0.genus() 1 sage: vp1 = '(0,6,5,7,2,1,3,4)' sage: fp1 = '(0,2,1,4,6,5,3,7)' sage: cm1 = FatGraph(vp1, fp1) sage: cm1.genus() 2 Non-connected examples:: sage: cm0.disjoint_union(cm0, cm1).genus() 4 sage: cm1.disjoint_union(cm0).genus() 3 """ nc = len(self.connected_components()) chi = self._nf - self._n // 2 + self._nv return nc - chi // 2
[docs] def euler_characteristic(self): r""" Return the Euler characteristic of the associated surface. The *Euler characteristic* of a surface complex is `v - e + f`, where `v` is the number of vertices, `e` the number of edges and `f` the number of faces. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,4,2,5,1,3)' sage: fp = '(0,5)(1,3,4,2)' sage: cm = FatGraph(vp, fp) sage: cm.euler_characteristic() 0 A non-connected example (Euler characteristic is additive):: sage: cm.disjoint_union(cm, cm, cm).euler_characteristic() 0 """ return self._nf - self._n // 2 + self._nv
# TODO: fix your mind about the meaning of dual!!!
[docs] def dual(self): r""" Return the dual fat graph. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: F = FatGraph(fp='(0)(1)') sage: F.dual() sage: F FatGraph('(0)(1)', '(0,1)') sage: F._check() sage: s = '20_i31027546b98jchedfag_23146758ab9igdhfejc0' sage: F = FatGraph.from_string(s) sage: F.dual() sage: F._check() sage: F.dual() sage: F._check() sage: F == FatGraph.from_string(s) True """ # TODO: invert in place !!!! self._vp, self._fp = perm_invert(self._fp, self._n), perm_invert(self._vp, self._n) self._nv, self._nf = self._nf, self._nv self._vl, self._fl = self._fl, self._vl self._vd, self._fd = self._fd, self._vd
[docs] def edge_lengths_polytope(self, b, min_length=0): r""" Return the polytope of edge lengths where the input ``b`` specifies the length of faces. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,4,2,5,1,3)' sage: fp = '(0,5)(1,3,4,2)' sage: cm = FatGraph(vp, fp) sage: cm.edge_lengths_polytope([3, 5], min_length=1).vertices_list() [[1, 1, 1, 1, 2, 2], [2, 2, 1, 1, 1, 1]] sage: cm.edge_lengths_polytope([3, 5], min_length=0).vertices_list() [[0, 0, 1, 1, 3, 3], [3, 3, 1, 1, 0, 0]] sage: vp = '(0,3,4)(1,2,6)(5)(7)' sage: fp = '(0,6,7,2)(1,4,5,3)' sage: cm = FatGraph(vp, fp) sage: cm.edge_lengths_polytope([5, 7]) A 2-dimensional polyhedron in QQ^8 defined as the convex hull of 3 vertices TESTS:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,4,2,5,1,3)' sage: fp = '(0,5)(1,3,4,2)' sage: cm = FatGraph(vp, fp) sage: cm.edge_lengths_polytope([3, 5, 2]) Traceback (most recent call last): ... ValueError: the length of b must be the number of faces """ if self.num_faces() != len(b): raise ValueError("the length of b must be the number of faces") ieqs = [] # positivity for i in range(self._n): l = [0] * self._n l[i] = 1 ieqs.append([-min_length] + l) eqns = [] # half edge equations for i in range(0, self._n, 2): j = i ^ 1 l = [0] * self._n l[i] = 1 l[j] = -1 eqns.append([0] + l) # face equations for bb, f in zip(b, self.faces()): l = [0] * self._n for i in f: l[i] = 1 eqns.append([-bb] + l) from sage.geometry.polyhedron.constructor import Polyhedron return Polyhedron(ieqs=ieqs, eqns=eqns)
[docs] def integral_points(self, b, min_length=1): r""" Return the edge lengths solution to the face lengths constraint ``b``. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,4,2,5,1,3)' sage: fp = '(0,5)(1,3,4,2)' sage: cm = FatGraph(vp, fp) sage: cm.integral_points((2, 4)) ((1, 1, 1, 1, 1, 1),) sage: cm.integral_points((3, 5)) ((1, 1, 1, 1, 2, 2), (2, 2, 1, 1, 1, 1)) sage: cm.integral_points((5, 11)) ((1, 1, 3, 3, 4, 4), (2, 2, 3, 3, 3, 3), (3, 3, 3, 3, 2, 2), (4, 4, 3, 3, 1, 1)) """ return self.edge_lengths_polytope(b, min_length).integral_points()
# def kontsevich_volume_rational_function(self, R=None): # r""" # This is not under an appropriate form... # """ # from sage.rings.rational_field import QQ # from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing # # nf = self._nf # fl = self._fl # n = self._n # if R is None: # R = PolynomialRing(QQ, 'b', nf) # gens = R.gens() # res = R.one() # for i in range(self._n): # j = i ^ 1 # if j < i: # continue # res *= 1 / self.automorphism_group().group_cardinality() / (gens[fl[i]] + gens[fl[j]]) # return res ############################## # Augmentation and reduction # ############################## def _check_alloc(self, n, nv=None, nf=None): if nv is not None: import warnings warnings.warn("argument nv of _check_alloc is deprecated and will be removed from a future version of surface-dynamics") if nf is not None: import warnings warnings.warn("argument nf of _check_alloc is deprecated and will be removed from a future version of surface-dynamics") if len(self._vp) < n or \ len(self._fp) < n or \ len(self._vl) < n or \ len(self._fl) < n or \ len(self._fd) < n or \ len(self._vd) < n: raise TypeError("reallocation needed") def _set_genus0_loop(self): r""" EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: f = FatGraph('()', '()', mutable=True) sage: f._realloc(2) sage: f._set_genus0_loop() sage: f._check() sage: f FatGraph('(0,1)', '(0)(1)') sage: f.remove_edge(0) sage: f FatGraph('()', '()') """ self._check_alloc(2) self._n = 2 self._nf = 2 self._nv = 1 # set face self._fp[0] = 0 self._fp[1] = 1 self._fl[0] = 0 self._fl[1] = 1 self._fd[0] = self._fd[1] = 1 # set vertex self._vp[0] = 1 self._vp[1] = 0 self._vl[0] = self._vl[1] = 0 self._vd[0] = 2 def _set_genus0_edge(self): r""" EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: f = FatGraph('()', '()', mutable=True) sage: f._realloc(2) sage: f._set_genus0_edge() sage: f._check() sage: f FatGraph('(0)(1)', '(0,1)') sage: f.contract_edge(0) sage: f FatGraph('()', '()') """ if not self._mutable: raise ValueError('immutable graph; use a copy instead') self._check_alloc(2) self._n = 2 self._nf = 1 self._nv = 2 # set vertex self._vp[0] = 0 self._vp[1] = 1 self._vl[0] = 0 self._vl[1] = 1 self._vd[0] = self._vd[1] = 1 # set face self._fp[0] = 1 self._fp[1] = 0 self._fl[0] = self._fl[1] = 0 self._fd[0] = 2 def _set_genus1_square(self): r""" EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: f = FatGraph('()', '()', mutable=True) sage: f._realloc(4) sage: f._set_genus1_square() sage: f._check() sage: f FatGraph('(0,2,1,3)', '(0,2,1,3)') sage: f.remove_face_trisection(0) sage: f FatGraph('()', '()') sage: f._check() """ if not self._mutable: raise ValueError('immutable graph; use a copy instead') self._check_alloc(4) self._n = 4 self._nv = self._nf = 1 vp = self._vp fp = self._fp vl = self._vl fl = self._fl vd = self._vd fd = self._fd fp[0] = 2; fp[1] = 3; fp[2] = 1; fp[3] = 0 vp[0] = 2; vp[1] = 3; vp[2] = 1; vp[3] = 0 fl[0] = fl[1] = fl[2] = fl[3] = 0 fd[0] = 4 vl[0] = vl[1] = vl[2] = vl[3] = 0 vd[0] = 4
[docs] def split_face(self, i, j): r""" Insert an edge between the darts ``i`` and ``j`` to split the face. This method only work when ``i`` and ``j`` belongs to the same face. One of the face will contains i, fp[i], ..., (the x-face) and the other one will contain j, fp[j], ... In the special case i=j, a monogon (= face with only one edge) is created. The converse operation is implemented in :meth:`remove_edge`. This operation is equivalent to first adding an isolated edge with :meth:`add_edge` and perform two :meth:`swap`: ``swap(j, k)`` and ``swap(i, k + 1)`` where ``(k, k+1)`` is the added edge. Though, contrarily to :meth:`swap` this method does not perform relabelling and runs in constant time for labelled fat graphs. EXAMPLES: The once punctured torus:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: vp20 = '(0,4,2,5,1,3)' sage: fp20 = '(0,5)(1,3,4,2)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_face(2, 0) sage: cm == FatGraph(vp20, fp20) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_edge() sage: cm.swap(0, k) sage: cm.swap(2, k + 1) sage: cm == FatGraph(vp20, fp20) True sage: vp10 = '(0,4,2,1,5,3)' sage: fp10 = '(0,2,5)(1,3,4)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_face(1, 0) sage: cm == FatGraph(vp10, fp10) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_edge() sage: cm.swap(0, k) sage: cm.swap(1, k + 1) sage: cm == FatGraph(vp10, fp10) True sage: vp30 = '(0,4,2,1,3,5)' sage: fp30 = '(0,2,1,5)(3,4)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_face(3, 0) sage: cm == FatGraph(vp30, fp30) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_edge() sage: cm.swap(0, k) sage: cm.swap(3, k + 1) sage: cm == FatGraph(vp30, fp30) True sage: vp00 = '(0,5,4,2,1,3)' sage: fp00 = '(0,2,1,3,4)(5)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_face(0, 0) sage: cm == FatGraph(vp00, fp00) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_edge() sage: cm.swap(0, k) sage: cm.swap(0, k + 1) sage: cm == FatGraph(vp00, fp00) True sage: vp22 = '(0,2,5,4,1,3)' sage: fp22 = '(0,4,2,1,3)(5)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_face(2, 2) sage: cm == FatGraph(vp22, fp22) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_edge() sage: cm.swap(2, k) sage: cm.swap(2, k + 1) sage: cm == FatGraph(vp22, fp22) True A genus 2 surface:: sage: vp = '(0,3,6,8)(1,10,9,12,5)(2,7,4,11)(13)' sage: fp = '(0,5,7,3,11,1,8,10,4,12,13,9,6,2)' sage: cm = FatGraph(vp, fp, 21, mutable=True); cm._check() sage: cm.split_face(0, 1); cm._check() sage: cm.split_face(4, 13); cm._check() sage: cm.split_face(5, 14); cm._check() sage: cm FatGraph('(0,15,3,6,8)(1,14,18,10,9,12,5,19)(2,7,4,17,11)(13,16)', '(0,19,14)(1,8,10,17,13,9,6,2,15)(3,11,18,5,7)(4,12,16)') sage: cm.remove_edge(18); cm._check() sage: cm.remove_edge(16); cm._check() sage: cm.remove_edge(14); cm._check() sage: cm == FatGraph(vp, fp, 21) True """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') i = self._check_dart(i) j = self._check_dart(j) vp = self._vp vl = self._vl vd = self._vd fp = self._fp fl = self._fl fd = self._fd n = self._n nf = self._nf nv = self._nv self._check_alloc(n + 2) x = self._n y = self._n + 1 ii = vp[i] ^ 1 # = fp^-1(i) jj = vp[j] ^ 1 # = fp^-1(j) self._n += 2 self._nf += 1 if i == j: # add a monogon # fp (i A) -> (i A x)(y) # vp (... i ...) -> (... i y x ...) fp[ii] = x fp[x] = i fp[y] = y vp[x] = vp[i] vp[y] = x vp[i] = y vl[x] = vl[y] = vl[i] fl[x] = fl[i] fl[y] = nf fd[fl[i]] += 1 fd[nf] = 1 vd[vl[i]] += 2 else: # general case # update permutations: # fp (i A j B) -> (i A x) (j B y) # ep -> (x y) # vp (... i ...) (... j ...) -> (... i y ...) (... j x ...) fp[jj] = x fp[x] = i fp[ii] = y fp[y] = j vp[y] = vp[i] vp[i] = y vp[x] = vp[j] vp[j] = x # update labels and degrees vl[x] = vl[j] vl[y] = vl[i] fl[x] = fl[i] fl[y] = fl[j] dfy = 0 # degree of the y-face while fl[y] != nf: fl[y] = nf y = fp[y] dfy += 1 dfx = fd[fl[x]] + 2 - dfy fd[fl[x]] = dfx fd[fl[y]] = dfy vd[vl[x]] += 1 vd[vl[y]] += 1
[docs] def remove_edge(self, i): r""" Remove an edge. If the edge has the same face on both sides, then the genus drops by 1. Inverse operation of :meth:`split_face` or :meth:`trisect_face`. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: cm = FatGraph(vp, fp) sage: vp20 = '(0,5,4,2,1,3)' sage: fp20 = '(0,2,1,3,4)(5)' sage: cm2 = FatGraph(vp20, fp20, 6, mutable=True) sage: cm2.remove_edge(4) sage: cm2 == cm True sage: cm2 = FatGraph(vp20, fp20, 6, mutable=True) sage: cm2.remove_edge(5) sage: cm2 == cm True sage: vp10 = '(0,4,2,5,1,3)' sage: fp10 = '(0,5)(1,3,4,2)' sage: cm2 = FatGraph(vp10, fp10, mutable=True) sage: cm2.remove_edge(4) sage: cm2 == cm True sage: cm2 = FatGraph(vp10, fp10, mutable=True) sage: cm2.remove_edge(5) sage: cm2 == cm True sage: vp30 = '(0,4,2,1,5,3)' sage: fp30 = '(0,2,5)(1,3,4)' sage: cm2 = FatGraph(vp30, fp30, mutable=True) sage: cm2.remove_edge(4) sage: cm2 == cm True sage: cm2 = FatGraph(vp30, fp30, mutable=True) sage: cm2.remove_edge(5) sage: cm2 == cm True sage: vp00 = '(0,5,4,2,1,3)' sage: fp00 = '(0,2,1,3,4)(5)' sage: cm2 = FatGraph(vp00, fp00, mutable=True) sage: cm2.remove_edge(4) sage: cm2 == cm True sage: vp22 = '(0,2,5,4,1,3)' sage: fp22 = '(0,4,2,1,3)(5)' sage: cm2 = FatGraph(vp00, fp00, mutable=True) sage: cm2.remove_edge(4) sage: cm2 == cm True """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') i = self._check_dart(i) j = i ^ 1 vp = self._vp fp = self._fp vl = self._vl fl = self._fl vd = self._vd fd = self._fd n = self._n nf = self._nf fi = fl[i] fj = fl[j] if fi == fj: raise ValueError("i=%d and j=%d on the same face" % (i, j)) fmin = min(fi, fj) if i < n - 2 or j < n - 2 or max(fi, fj) != nf - 1: raise NotImplementedError ii = vp[i] ^ 1 jj = vp[j] ^ 1 if fd[fl[i]] == 1: # monogon assert vp[i] == j fp[jj] = fp[j] vp[fp[j]] = vp[j] elif fd[fl[j]] == 1: # monogon assert vp[j] == i fp[ii] = fp[i] vp[fp[i]] = vp[i] else: # none of them are monogons fp[ii] = fp[j] fp[jj] = fp[i] vp[fp[j]] = vp[i] vp[fp[i]] = vp[j] # update vertex and face degrees vd[vl[i]] -= 1 vd[vl[j]] -= 1 d = fd[fl[i]] + fd[fl[j]] - 2 fd[fmin] = d # update face labels k = fp[i] while fl[k] != fmin: fl[k] = fmin k = fp[k] k = fp[j] while fl[k] != fmin: fl[k] = fmin k = fp[k] self._n -= 2 self._nf -= 1 self._vp[self._n] = self._vp[self._n + 1] = -1 self._fp[self._n] = self._fp[self._n + 1] = -1
[docs] def split_vertex(self, i, j): r""" Insert a new edge to split the vertex located at the darts i and j. This operation keeps the genus constant. The inverse operation is implemented in :meth:`contract_edge`. This operation is equivalent to first adding an isolated loop with :meth:`add_loop` and perform two :meth:`swap`: ``swap(j, k)``, and ``swap(i, k + 1)`` where ``(k, k+1)`` is the added edge. Though, contrarily to :meth:`swap` this method does not perform relabelling and runs in constant time for labelled fat graphs. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: vp02 = '(0,4,1,3)(2,5)' sage: fp02 = '(0,4,2,1,3,5)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_vertex(0, 2) sage: cm == FatGraph(vp02, fp02) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_loop() sage: cm.swap(2, k) sage: cm.swap(0, k + 1) sage: cm == FatGraph(vp02, fp02) True sage: vp01 = '(0,4,3)(1,5,2)' sage: fp01 = '(0,2,4,1,3,5)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_vertex(0, 1) sage: cm == FatGraph(vp01, fp01) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_loop() sage: cm.swap(1, k) sage: cm.swap(0, k + 1) sage: cm == FatGraph(vp01, fp01) True sage: vp03 = '(0,4)(1,3,5,2)' sage: fp03 = '(0,2,1,4,3,5)' sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: cm.split_vertex(0, 3) sage: cm == FatGraph(vp03, fp03) True sage: cm = FatGraph(vp, fp, 6, mutable=True) sage: k = cm.add_loop() sage: cm.swap(3, k) sage: cm.swap(0, k + 1) sage: cm == FatGraph(vp03, fp03) True """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') i = self._check_dart(i) j = self._check_dart(j) vp = self._vp fp = self._fp vl = self._vl fl = self._fl n = self._n nf = self._nf nv = self._nv vd = self._vd fd = self._fd self._check_alloc(n + 2) x = self._n y = self._n + 1 ii = vp[i] jj = vp[j] self._n += 2 self._nv += 1 if i == j: # introduce a vertex of degree 1 vp[x] = ii vp[i] = x vp[y] = y fp[y] = i fp[x] = y fp[ii ^ 1] = x fl[x] = fl[y] = fl[i] vl[x] = vl[i] vl[y] = nv vd[vl[x]] += 1 vd[vl[y]] = 1 fd[fl[x]] += 2 else: # general case # update permutations # fp (... i ...) (... j ...) -> (... y i ...) (... x j ...) # ep -> (x y) # vp (A i B j) -> (A i x) (B j y) vp[x] = jj vp[i] = x vp[y] = ii vp[j] = y fp[jj ^ 1] = x fp[x] = j fp[ii ^ 1] = y fp[y] = i # update labels and degrees fl[x] = fl[j] fl[y] = fl[i] vl[x] = vl[i] vl[y] = vl[j] dvy = 0 while vl[y] != nv: vl[y] = nv y = vp[y] dvy += 1 dvx = vd[vl[x]] + 2 - dvy vd[vl[x]] = dvx vd[vl[y]] = dvy fd[fl[x]] += 1 fd[fl[y]] += 1
[docs] def contract_edge(self, i): r""" Contract an edge between two distinct zeros. Inverse operation of :meth:`split_vertex` except that here we allow vertices of degree one. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: vp02 = '(0,4,1,3)(2,5)' sage: fp02 = '(0,4,2,1,3,5)' sage: cm = FatGraph(vp02, fp02, mutable=True) sage: cm.contract_edge(4) sage: cm == FatGraph(vp, fp) True sage: cm = FatGraph(vp02, fp02, mutable=True) sage: cm.contract_edge(5) sage: cm == FatGraph(vp, fp) True sage: vp01 = '(0,4,3)(1,5,2)' sage: fp01 = '(0,2,4,1,3,5)' sage: cm = FatGraph(vp01, fp01, mutable=True) sage: cm.contract_edge(4) sage: cm == FatGraph(vp, fp) True sage: cm = FatGraph(vp01, fp01, mutable=True) sage: cm.contract_edge(5) sage: cm == FatGraph(vp, fp) True sage: vp03 = '(0,4)(1,3,5,2)' sage: fp03 = '(0,2,1,4,3,5)' sage: cm = FatGraph(vp03, fp03, mutable=True) sage: cm.contract_edge(4) sage: cm == FatGraph(vp, fp) True sage: cm = FatGraph(vp03, fp03, mutable=True) sage: cm.contract_edge(5) sage: cm == FatGraph(vp, fp) True Degree 1 vertices:: sage: cm = FatGraph('(0,2)(1)(3)', '(0,1,2,3)', mutable=True) sage: cm.contract_edge(2) sage: cm FatGraph('(0)(1)', '(0,1)') sage: cm2 = FatGraph('(0,2)(1)(3)', '(0,1,2,3)', mutable=True) sage: cm2.contract_edge(3) sage: cm == cm2 True """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') i = self._check_dart(i) j = i ^ 1 vp = self._vp fp = self._fp vl = self._vl fl = self._fl vd = self._vd fd = self._fd n = self._n nv = self._nv if vl[i] == vl[j]: raise ValueError("i=%d and j=%d on the same vertex" % (i, j)) vi = vl[i] vj = vl[j] vmin = min(vi, vj) if i < n - 2 or j < n - 2 or max(vi, vj) != nv - 1: raise NotImplementedError ii = vp[i] ^ 1 jj = vp[j] ^ 1 if vd[vl[i]] == 1: # vertex of degree one assert fp[j] == i vp[fp[i]] = vp[j] fp[jj] = fp[i] elif vd[vl[j]] == 1: # vertex of degree one assert fp[i] == j vp[fp[j]] = vp[i] fp[ii] = fp[j] else: vp[fp[i]] = vp[i] vp[fp[j]] = vp[j] fp[ii] = fp[i] fp[jj] = fp[j] # update vertex and face degree fd[fl[i]] -= 1 fd[fl[j]] -= 1 d = vd[vl[i]] + vd[vl[j]] - 2 vd[vmin] = d # update vertex labels k = vp[i] while vl[k] != vmin: vl[k] = vmin k = vp[k] k = vp[j] while vl[k] != vmin: vl[k] = vmin k = vp[k] self._n -= 2 self._nv -= 1
[docs] def swap(self, i, j, check=True): r""" Modify the fat graph by multiplying the vertex and face permutations by the transposition (i,j) respectively on left and right. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: g = FatGraph('(0,1,2,3)', '(0)(2)(3,1)', mutable=True) sage: g.swap(0, 1) sage: g FatGraph('(0,2,3)(1)', '(0,1,3)(2)') sage: g.swap(0, 2) sage: g FatGraph('(0,3)(1)(2)', '(0,1,3,2)') sage: g.swap(0, 3) sage: g FatGraph('(0)(1)(2)(3)', '(0,1)(2,3)') """ if check: i = self._check_dart(i) j = self._check_dart(j) vp = self._vp fp = self._fp fpi_pre = vp[i] ^ 1 fpj_pre = vp[j] ^ 1 vp[i], vp[j] = vp[j], vp[i] fp[fpi_pre], fp[fpj_pre] = fp[fpj_pre], fp[fpi_pre] # TODO: the code below maintains label and degrees (ie self._vl, # self._vd, self._nv, self._fl, self._fd, self._nf). We should have a # "lighter" class without these attributes. vl = self._vl vd = self._vd nv = self._nv fl = self._fl fd = self._fd nf = self._nf def split(p, d, l, i, j, m): k = j d[m] = 0 li = l[i] while l[k] != m: l[k] = m d[m] += 1 d[li] -= 1 k = p[k] def merge(p, d, l, i, j, m): if l[i] < l[j]: min_label = l[i] max_label = l[j] k = j else: min_label = l[j] max_label = l[i] k = i assert max_label > min_label assert l[k] == max_label while l[k] == max_label: l[k] = min_label k = p[k] d[min_label] += d[max_label] if max_label != m - 1: k = 0 while l[k] != m - 1: k += 1 while l[k] == m - 1: l[k] = max_label k = p[k] d[max_label] = d[m - 1] d[m - 1] = -1 if vl[i] == vl[j]: # vertex split (attributes the new label to the vertex containing j) split(vp, vd, vl, i, j, nv) self._nv += 1 else: # vertex fusion merge(vp, vd, vl, vp[i], vp[j], nv) self._nv -= 1 if fl[i] == fl[j]: # face split (attributes the new label to the face containing j) split(fp, fd, fl, i, j, nf) self._nf += 1 else: # face fusion merge(fp, fd, fl, i, j, nf) self._nf -= 1
[docs] def add_edge(self, i=None, j=None, check=True): r""" Insert an isolated edge. By default the created edge is isolated. If arguments ``i`` or ``j`` is provided its start or respectively end INPUT: - ``i``, ``j`` -- optional darts. If specified, the new darts of the edge will be inserted after ``i`` and ``j`` at the corresponding vertices. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: cm = FatGraph('', '', mutable=True, max_num_dart=4) sage: cm.add_edge() 0 sage: cm._check() sage: cm FatGraph('(0)(1)', '(0,1)') sage: cm.add_edge() 2 sage: cm._check() sage: cm FatGraph('(0)(1)(2)(3)', '(0,1)(2,3)') sage: cm = FatGraph('(0,1)', '(0)(1)', mutable=True) sage: cm._realloc(8) sage: cm.add_edge(0) 2 sage: cm._check() sage: cm FatGraph('(0,2,1)(3)', '(0,2,3)(1)') sage: cm.add_edge(0) 4 sage: cm._check() sage: cm FatGraph('(0,4,2,1)(3)(5)', '(0,2,3,4,5)(1)') sage: cm.add_edge(3) 6 sage: cm._check() sage: cm FatGraph('(0,4,2,1)(3,6)(5)(7)', '(0,2,6,7,3,4,5)(1)') sage: cm = FatGraph('(0,1)', '(0)(1)', mutable=True) sage: cm._realloc(8) sage: cm.add_edge(0, 1) 2 sage: cm FatGraph('(0,2,1,3)', '(0,2,1,3)') sage: cm.add_edge(0, 3) 4 sage: cm FatGraph('(0,4,2,1,3,5)', '(0,2,1,5)(3,4)') sage: cm.add_edge(1, 2) 6 """ if check: if not self._mutable: raise ValueError('immutable fat graph; use a mutable copy instead') self._check_alloc(self._n + 2) if i is not None: i = self._check_dart(i) if j is not None: j = self._check_dart(j) x = self._n y = self._n + 1 self._vd[self._nv] = 1 self._vd[self._nv + 1] = 1 self._fd[self._nf] = 2 self._vl[x] = self._nv self._vl[y] = self._nv + 1 self._fl[x] = self._nf self._fl[y] = self._nf self._vp[x] = x self._vp[y] = y self._fp[x] = y self._fp[y] = x self._nv += 2 self._nf += 1 self._n += 2 if i is not None: self.swap(self._fp[x ^ 1], self._fp[self._vp[i] ^ 1]) if j is not None: self.swap(self._fp[y ^ 1], self._fp[self._vp[j] ^ 1]) return x
[docs] def add_loop(self, check=True): r""" Insert an isolated loop. EXAMPLES:: sage: from surface_dynamics import FatGraph sage: cm = FatGraph('', '', mutable=True, max_num_dart=4) sage: cm.add_loop() 0 sage: cm.add_loop() 2 sage: cm FatGraph('(0,1)(2,3)', '(0)(1)(2)(3)') """ if check: self._check_alloc(self._n + 2) x = self._n y = self._n + 1 self._vd[self._nv] = 2 self._fd[self._nf] = 1 self._fd[self._nf + 1] = 1 self._vl[x] = self._nv self._vl[y] = self._nv self._fl[x] = self._nf self._fl[y] = self._nf + 1 self._vp[x] = y self._vp[y] = x self._fp[x] = x self._fp[y] = y self._nv += 1 self._nf += 2 self._n += 2 return x
[docs] def trisect_face(self, i, j, k): r""" Insert a bridge INPUT: - ``i``, ``j``, ``k`` - dart in the same face in counter-clockwise order EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: cm = FatGraph(vp, fp, 8, mutable=True) sage: vp021 = '(0,7,2,6,5,1,4,3)' sage: fp021 = '(0,5,1,3,7,2,4,6)' sage: cm021 = FatGraph(vp021, fp021) sage: cm.trisect_face(0, 2, 1) sage: cm == cm021 True sage: cm = FatGraph(vp, fp, 10, mutable=True) sage: cm.trisect_face(0, 0, 3) sage: cm = FatGraph(vp, fp, 10, mutable=True) sage: cm.trisect_face(0, 3, 3) sage: cm = FatGraph(vp, fp, 10, mutable=True) sage: cm.trisect_face(0, 3, 0) sage: cm = FatGraph(vp, fp, 10, mutable=True) sage: cm.trisect_face(0, 0, 0) """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') vp = self._vp fp = self._fp vl = self._vl fl = self._fl vd = self._vd fd = self._fd n = self._n nf = self._nf nv = self._nv i = self._check_dart(i) j = self._check_dart(j) k = self._check_dart(k) if fl[i] != fl[j] or fl[i] != fl[k]: raise ValueError("darts in distinct faces") self._check_alloc(n + 4) self._n += 4 ii = vp[i] ^ 1 # = fp^-1(i) at the end of B jj = vp[j] ^ 1 # = fp^-1(j) at the end of A kk = vp[k] ^ 1 # = fp^-1(k) at the end of C x = n y = n + 1 xx = n + 2 yy = n + 3 fl[x] = fl[y] = fl[xx] = fl[yy] = fl[i] vl[x] = vl[k] vl[xx] = vl[y] = vl[j] vl[yy] = vl[i] fd[fl[i]] += 4 vd[vl[i]] += 1 vd[vl[j]] += 2 vd[vl[k]] += 1 if i == j == k: # face: -> (x xx y yy j C) # (j C kk) vp[x] = vp[j] vp[yy] = x vp[y] = yy vp[xx] = y vp[j] = xx fp[kk] = x fp[x] = xx fp[xx] = y fp[y] = yy fp[yy] = j elif i == j: # face: -> (x xx y k B yy j C) # (j C kk) (k B ii) vp[yy] = vp[j] vp[y] = yy vp[xx] = y vp[j] = xx vp[x] = vp[k] vp[k] = x fp[ii] = yy fp[yy] = j fp[kk] = x fp[x] = xx fp[xx] = y fp[y] = k elif j == k: # face: -> (x xx i A y k B yy) # (i A jj) (k B ii) vp[yy] = vp[i] vp[i] = yy vp[y] = vp[k] vp[xx] = y vp[x] = xx vp[k] = x fp[ii] = yy fp[yy] = x fp[x] = xx fp[xx] = i fp[jj] = y fp[y] = k elif k == i: # face: -> (x xx i A y yy j C) # (i A jj) (j C kk) vp[y] = vp[j] vp[xx] = y vp[j] = xx vp[x] = vp[i] vp[yy] = x vp[i] = yy fp[kk] = x fp[x] = xx fp[xx] = i fp[jj] = y fp[y] = yy fp[yy] = j else: # general case # vertex: (...i...)(...j...)(...k...) -> (...i yy...)(...j xx y...)(...k x...) # edge : add (x y) (xx yy) # face : (i A j C k B) -> (x xx i A y k B yy j C) # # (i A jj) (j C kk) (k B ii) vp[yy] = vp[i] vp[i] = yy vp[y] = vp[j] vp[xx] = y vp[j] = xx vp[x] = vp[k] vp[k] = x fp[kk] = x fp[x] = xx fp[xx] = i fp[jj] = y fp[y] = k fp[ii] = yy fp[yy] = j
[docs] def remove_face_trisection(self, x): r""" Remove the face trisection at ``x``. TESTS:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,2,1,3)' sage: fp = '(0,2,1,3)' sage: for i, j, k in [(0, 2, 1), (0, 0, 3), (0, 3, 3), (0, 3, 0), (0, 0, 0)]: ....: cm = FatGraph(vp, fp, 8, mutable=True) ....: cm.trisect_face(i, j, k) ....: cm.remove_face_trisection(4) ....: assert cm == FatGraph(vp, fp) """ fp = self._fp fl = self._fl fd = self._fd vp = self._vp vl = self._vl vd = self._vd x = self._check_dart(x) xx = fp[x] y = x ^ 1 yy = xx ^ 1 if fl[x] != fl[y] or fl[x] != fl[xx] or fl[x] != fl[yy]: raise ValueError("not a trisection") if (x, y, xx, yy) != (self._n - 4, self._n - 3, self._n - 2, self._n - 1): raise NotImplementedError('x={} y={} xx={} yy={}'.format(x, y, xx, yy)) # face: (x xx i A y k B yy j C) -> (i A j C k B) # -> (i A jj) (j C kk) (k B ii) i = fp[xx] k = fp[y] j = fp[yy] ii = vp[yy] ^ 1 # = fp^-1(yy) jj = vp[y] ^ 1 # = fp^-1(y) kk = vp[x] ^ 1 # = fp^-1(x) if fp[xx] == y and fp[y] == yy: # vertex (... j xx y yy x ...) -> (... j ...) # face (x xx y yy j C) -> (j C) # (j C kk) assert vp[j] == xx assert vp[xx] == y assert vp[yy] == x vp[j] = vp[x] fp[kk] = j elif fp[xx] == y: # face: (x xx y k B yy j C) -> (j C k B) # (j C kk) (k B ii) assert fp[y] != yy and fp[yy] != x assert vp[j] == xx assert vp[xx] == y assert vp[y] == yy vp[j] = vp[yy] assert vp[k] == x vp[k] = vp[x] fp[kk] = k fp[ii] = j elif fp[yy] == x: # face: (x xx i A y k B yy) -> (i A k B) # (i A jj) (k B ii) assert fp[xx] != y and fp[y] != yy assert vp[i] == yy vp[i] = vp[yy] assert vp[k] == x assert vp[x] == xx assert vp[xx] == y vp[k] = vp[y] fp[ii] = i fp[jj] = k elif fp[y] == yy: # face: (x xx i A y yy j C) -> (i A j C) # (i A jj) (j C kk) assert fp[xx] != y and fp[yy] != x assert vp[i] == yy assert vp[yy] == x vp[i] = vp[x] assert vp[j] == xx assert vp[xx] == y vp[j] = vp[y] fp[kk] = i fp[jj] = j else: # face: (x xx i A y k B yy j C) -> (i A j C k B) # (i A jj) (j C kk) (k B ii) assert fp[xx] != y and fp[y] != yy and fp[yy] != x assert vp[i] == yy vp[i] = vp[yy] assert vp[j] == xx assert vp[xx] == y vp[j] = vp[y] assert vp[k] == x vp[k] = vp[x] fp[jj] = j fp[kk] = k fp[ii] = i self._n -= 4 fd[fl[i]] -= 4 vd[vl[i]] -= 1 vd[vl[j]] -= 2 vd[vl[k]] -= 1 vp[self._n] = vp[self._n + 1] = vp[self._n + 2] = vp[self._n + 3] = -1 vl[self._n] = vl[self._n + 1] = vl[self._n + 2] = vl[self._n + 3] = -1 fp[self._n] = fp[self._n + 1] = fp[self._n + 2] = fp[self._n + 3] = -1 fl[self._n] = fl[self._n + 1] = fl[self._n + 2] = fl[self._n + 3] = -1 assert perm_check(vp, self._n), vp assert perm_check(fp, self._n), fp
[docs] def move_dart(self, i, j=None, check=True): r""" Move the dart ``i`` so that it comes right after ``j`` around the corresponding vertex. If ``j`` is ``None``, then ``i`` becomes the only dart adjacent to a new vertex. This requires ``i`` to be adjacent to two distinct faces. INPUT: - ``i`` (integer) -- a dart - ``j`` (integer or ``None``) -- (optional) dart EXAMPLES:: sage: from surface_dynamics import FatGraph sage: cm = FatGraph('(0,3,5)(1,4,2)', mutable=True) sage: cm.move_dart(0) sage: cm._check() sage: cm FatGraph('(0)(1,4,2)(3,5)', '(0,2,5,1)(3,4)') sage: cm.move_dart(1) Traceback (most recent call last): ... NotImplementedError: cylinder case: single face adjacent to i sage: cm = FatGraph('(0,3,5)(1,4,2)', mutable=True) sage: cm.move_dart(0, 2) sage: cm._check() sage: cm FatGraph('(0,1,4,2)(3,5)', '(0)(1,2,5)(3,4)') sage: cm = FatGraph('(0,3,5)(1,4,2)', mutable=True) sage: cm.move_dart(0, 1) sage: cm._check() sage: cm FatGraph('(0,4,2,1)(3,5)', '(0,2,5)(1)(3,4)') """ if not self._mutable: raise ValueError('immutable fat graph; use a mutable copy instead') if check: i = self._check_dart(i) if j is not None: j = self._check_dart(j) if j is not None: if i == j: raise ValueError('invalid input') if self._fl[i] == self._fl[i ^ 1]: raise NotImplementedError('cylinder case: single face adjacent to i') vp = self._vp fp = self._fp vli = self._vl[i] fli = self._fl[i] # remove i where it used to be vpi_pre = fp[i ^ 1] fpi_pre = vp[i] ^ 1 assert vp[vpi_pre] == i assert fp[fpi_pre] == i vp[vpi_pre] = vp[i] fp[fpi_pre] = vpi_pre # insert i if j is None: vp[i] = i fp[i ^ 1] = i # update vertex data self._vd[self._vl[i]] -= 1 self._vl[i] = self._nv self._vd[self._nv] = 1 self._nv += 1 # merge the faces fl[i] and fl[i ^ 1] new_label = min(self._fl[i], self._fl[i ^ 1]) old_label = max(self._fl[i], self._fl[i ^ 1]) k = fp[i] # TODO: this operation should be incompatible with face labelling # TODO: make something more efficient than running through all darts for k in range(self._n): if self._fl[k] == old_label: self._fl[k] = new_label elif self._fl[k] == self._nf - 1: self._fl[k] = old_label self._fd[new_label] = self._fd[new_label] + self._fd[old_label] self._fd[old_label] = self._fd[self._nf - 1] self._fd[self._nf - 1] = -1 self._nf -= 1 else: fpj_pre = vp[j] ^ 1 vp[i] = vp[j] vp[j] = i fp[fpj_pre] = i fp[i ^ 1] = j self._vd[self._vl[i]] -= 1 self._vl[i] = self._vl[j] self._vd[self._vl[i]] += 1 fli = self._fl[i] flj = self._fl[j] flii = self._fl[i ^ 1] if fli == flj: # same number of faces k = j while self._fl[k] == fli: self._fl[k] = flii self._fd[fli] -= 1 self._fd[flii] += 1 k = fp[k] elif flii == flj: # same number of faces k = vpi_pre while self._fl[k] == flii: self._fl[k] = fli self._fd[fli] += 1 self._fd[flii] -= 1 k = fp[k] else: # two faces less raise NotImplementedError('move dart in different face')
[docs] def rotate(self, e): r""" Rotate the edge ``e`` counterclockwise. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: fg = FatGraph("(0,5,3)(1,4,2)", "(0,2,5,1,3,4)", mutable=True) sage: fg.rotate(0) sage: fg FatGraph('(0,5,1,3)(2,4)', '(0,5,2,1,3,4)') sage: fg.rotate(5) sage: fg FatGraph('(0,5,1,4,3)(2)', '(0,5,1,3,2,4)') sage: vp = "(0,8,15)(1,16,12)(2,13,3)(4,11,5)(6,9,7)(10,17,14)" sage: fp = "(0,12,2,13,16,10,4,11,14,8,6,9)(1,15,17)(3)(5)(7)" sage: fg = FatGraph(vp, fp, mutable=True) sage: fg.rotate(0) sage: fg.rotate(1) sage: fg FatGraph('(0,14,10,17)(1,13,3,2)(4,11,5)(6,9,7)(8,15)(12,16)', '(0,2,13,16,10,4,11,14,8,6,9,15)(1,17,12)(3)(5)(7)') """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') # <----- <----- <----- <----- <----- <---- # c b ^ a c ^ b a # / | # /E |E # / | # / --> | # e/ e| # / | # -----> -----> -----> -----> vp = self._vp fp = self._fp vl = self._vl fl = self._fl vd = self._vd fd = self._fd e = self._check_dart(e) E = e ^ 1 if vp[E] == E: raise ValueError("can not rotate the given edge") b = fp[e] B = b ^ 1 c = fp[b] a = vp[E] ^ 1 A = a ^ 1 fp[e] = c fp[a] = b fp[b] = E vp[c] = E vp[E] = B vp[b] = A vl[E] = vl[c] fl[b] = fl[a] vd[vl[b]] -= 1 vd[vl[c]] += 1 fd[fl[e]] -= 1 fd[fl[E]] += 1 self._check()
[docs] def rotate_dual(self, e): r""" Rotate the edge ``e`` counterclockwise in the dual graph. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: fg = FatGraph("(0,5,3)(1,4,2)", "(0,2,5,1,3,4)") sage: vp = "(0,8,15)(1,16,12)(2,13,3)(4,11,5)(6,9,7)(10,17,14)" sage: fp = "(0,12,2,13,16,10,4,11,14,8,6,9)(1,15,17)(3)(5)(7)" sage: fg = FatGraph(vp, fp, mutable=True) sage: fg.rotate_dual(0) sage: fg.rotate_dual(1) sage: fg FatGraph('(0,15,16)(1,12,8)(2,13,3)(4,11,5)(6,9,7)(10,17,14)', '(0,8,6,9,12,2,13,1,16,10,4,11,14)(3)(5)(7)(15,17)') """ if not self._mutable: raise ValueError('immutable graph; use a mutable copy instead') # |b |c \b |c # | | \ | # B| C| B\ | # a | e | a e \ | # ------ o ------ o ====> ----- o ------ o # A E | A E | # | | e = self._check_dart(e) B = self._vp[e] b = B ^ 1 return self.rotate(b)
###################################### # canonical labels and automorphisms # ###################################### # NOTE: this is broken for non-connected surfaces! def _good_starts(self, i0=-1, fix_vertices=False, fix_faces=False): r""" Return a set of half edges invariant under the (yet unknown) automorphism group. This function runs together with the augmentation algorithm to enumerate fat graphs up to isomorphism and must not be changed alone. It runs in O(n) as it goes once through every half edge. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: CM = [] sage: w = [0,1,2,3,4,5,0,6,7,1,2,5,3,4,6,7] sage: CM.append(FatGraph.from_unicellular_word(w)) sage: vp = '(0,15,3,6,8)(1,14,18,10,9,12,5,19)(2,7,4,17,11)(13,16)' sage: fp = '(0,19,14)(1,8,10,17,13,9,6,2,15)(3,11,18,5,7)(4,12,16)' sage: CM.append(FatGraph(vp, fp)) sage: for cm in CM: ....: gs = set(cm._good_starts()) ....: assert gs ....: for i in cm.darts(): ....: ggs = cm._good_starts(i) ....: if i in gs: ....: ggs = cm._good_starts(i) ....: assert ggs and ggs[0] == i and sorted(ggs) == sorted(gs), (gs, ggs, i) ....: else: ....: assert not ggs, (gs, ggs, i) """ n = self._n vd = self._vd fd = self._fd fp = self._fp vl = self._vl fl = self._fl if i0 == -1: ans = [] else: ans = [i0] if self._nv > 1: # consider only edges with distinct start and end. # Maximize the (degrees of) vertices, then whether the # adjacent faces are distinct, then the (degree of) adjacent # faces. if i0 != -1: j0 = i0 ^ 1 if vl[i0] == vl[j0]: return None vi0 = vl[i0] vj0 = vl[j0] fi0 = fl[i0] fj0 = fl[j0] if not fix_vertices: vi0 = vd[vi0] vj0 = vd[vj0] if not fix_faces: fi0 = fd[fi0] fj0 = fd[fj0] best = (vi0, vj0, fl[i0] != fl[j0], fi0, fj0) else: best = None for i in range(self._n): if i == i0: continue j = i ^ 1 if vl[i] == vl[j]: continue vi = vl[i] vj = vl[j] fi = fl[i] fj = fl[j] if not fix_vertices: vi = vd[vi] vj = vd[vj] if not fix_faces: fi = fd[fi] fj = fd[fj] cur = (vi, vj, fl[i] != fl[j], fi, fj) if best is None: best = cur if cur > best: if i0 != -1: return None else: del ans[:] best = cur if cur == best: ans.append(i) elif self._nf > 1: # (we have a single vertex but several faces) # consider only edges with distinct faces on their sides. # Maximize their degrees. if i0 != -1: j0 = i0 ^ 1 if fl[i0] == fl[j0]: return None fi0 = fl[i0] fj0 = fl[j0] if not fix_faces: fi0 = fd[fi0] fj0 = fd[fj0] best = (fi0, fj0) else: best = None for i in range(self._n): if i == i0: continue j = i ^ 1 if fl[i] == fl[j]: continue fi = fl[i] fj = fl[j] if not fix_faces: fi = fd[fi] fj = fd[fj] cur = (fi, fj) if best is None: best = cur if cur > best: if i0 != -1: return None else: del ans[:] best = cur if cur == best: ans.append(i) else: # (we have a single face and a single vertex) # Minimize the face angle between i and i ^ 1 # 1. compute the "face angle" between the half edges fa = [None] * n fa[0] = 0 i = fp[0] j = 1 while i != 0: fa[i] = j i = fp[i] j += 1 # 2. first guess if i0 != -1: j0 = i0 ^ 1 best = fa[j0] - fa[i0] if best < 0: best += n else: best = None # 3. run across the edges for i in range(self._n): if i == i0: continue j = i ^ 1 cur = fa[j] - fa[i] if cur < 0: cur += n if best is None: best = cur if cur < best: if i0 != -1: return None else: del ans[:] best = cur if cur == best: ans.append(i) return ans def _canonical_labelling_from(self, i0): r""" Edges gets relabelled (2i, 2i+1). OUTPUT: a triple ``(fc, fd, rel)`` where - ``fc`` is the list of edges seen along the walk (with respect to the new numbering) - ``fd``: face degrees seen along the walk - ``rel``: relabelling map {current labels} -> {canonical labels} EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,15,3,6,8)(1,14,18,10,9,12,5,19)(2,7,4,17,11)(13,16)' sage: fp = '(0,19,14)(1,8,10,17,13,9,6,2,15)(3,11,18,5,7)(4,12,16)' sage: cm = FatGraph(vp, fp) sage: for i in range(20): ....: fc, fd, rel = cm._canonical_labelling_from(i) ....: assert len(fc) == 20 ....: assert sorted(fd, reverse=True) == [9, 5, 3, 3] ....: assert sorted(rel) == list(range(20)) """ n = self._n fp = self._fp fc = [] # faces seen along the walk fd = [] # face degrees seen along the walk rel = [-1] * n # dart relabeling rel[i0] = 0 # first edge is relabelled (0,1) fc.append(0) c = 2 # current dart number (in the new labelling scheme) # walk along faces first, starting from i0 # along the way, we collect unseen edges i = fp[i0] wait = deque([i0 ^ 1]) d = 1 while i != i0: if rel[i] == -1: j = i ^ 1 if rel[j] != -1: assert rel[j] % 2 == 0 rel[i] = rel[j] + 1 else: rel[i] = c c += 2 wait.append(j) fc.append(rel[i]) d += 1 i = fp[i] fd.append(d) while wait: i0 = wait.popleft() if rel[i0] != -1: continue assert rel[i0 ^ 1] != -1 and rel[i0 ^ 1] % 2 == 0 rel[i0] = rel[i0 ^ 1] + 1 fc.append(rel[i0]) i = fp[i0] d = 1 while i != i0: if rel[i] == -1: j = i ^ 1 if rel[j] != -1: assert rel[j] % 2 == 0 rel[i] = rel[j] + 1 else: rel[i] = c c += 2 wait.append(j) fc.append(rel[i]) i = fp[i] d += 1 fd.append(d) assert len(fc) == self._n, (fc, fd, rel) assert len(fd) == self._nf, (fc, fd, rel) return fc, fd, rel # TODO: this is a waste! We should implement the proper partial relabeling def _canonical_labelling_from_if_better(self, best, i0): r""" INPUT: - ``best`` - a triple ``(fc, fd, rel)`` as given from _canonical_labeling_from - ``i0`` - start edge """ fc_best, fd_best, rel_best = best n = self._n fp = self._fp fl = self._fl sfd = self._fd is_fd_better = 0 # whether the current face degree works better is_fc_better = 0 # whether the current relabelling works better # 0 = equal # 1 = better # -1 = worse fd = [] # face degrees seen along the walk (want to maximize) fc = [] # edges seen along the walk (want to minimize) rel = [-1] * n # dart relabeling # walk along faces first, starting from i0 # along the way, we collect unseen edges rel[i0] = 0 # first edge is relabelled (0,1) c = 2 # current dart number (in the new labelling scheme) d = sfd[fl[i0]] if d < fd_best[0]: return -1, None elif d > fd_best[0]: is_fd_better = 1 fd.append(d) fc.append(0) i = fp[i0] wait = deque([i0 ^ 1]) while i != i0: if rel[i] == -1: j = i ^ 1 if rel[j] != -1: assert rel[j] % 2 == 0 rel[i] = rel[j] + 1 else: rel[i] = c c += 2 wait.append(j) # edge comparison ii = rel[i] if not is_fd_better and not is_fc_better: if ii < fc_best[len(fc)]: is_fc_better = 1 elif ii > fc_best[len(fc)]: if self._nf == 1: return -1, None is_fc_better = -1 fc.append(ii) i = fp[i] while wait: i0 = wait.popleft() # face already seen? if rel[i0] != -1: continue # face degree comparison d = sfd[fl[i0]] if not is_fd_better: if d < fd_best[len(fd)]: return -1, None elif d > fd_best[len(fd)]: is_fd_better = 1 fd.append(d) # root edge comparison assert rel[i0 ^ 1] != -1 and rel[i0 ^ 1] % 2 == 0 ii0 = rel[i0 ^ 1] + 1 if not is_fd_better and not is_fc_better: if ii0 < fc_best[len(fc)]: is_fc_better = 1 elif ii0 > fc_best[len(fc)]: is_fc_better = -1 rel[i0] = ii0 fc.append(ii0) i = fp[i0] while i != i0: # label the i-th edge (if not already) if rel[i] == -1: j = i ^ 1 if rel[j] != -1: assert rel[j] % 2 == 0 rel[i] = rel[j] + 1 else: rel[i] = c c += 2 wait.append(j) # edge comparison ii = rel[i] if not is_fd_better and not is_fc_better: if ii < fc_best[len(fc)]: is_fc_better = 1 elif ii > fc_best[len(fc)]: is_fc_better = -1 # update fc.append(ii) i = fp[i] cur = (fc, fd, rel) if is_fd_better: return 1, cur else: return is_fc_better, cur # NOTE: this is broken for non-connected surfaces! def _is_canonical(self, i0): r""" Return a pair ``(answer, automorphisms)`` where answer is a boolean that says whether this map is in canonical form and ``automorphisms`` form a generating set of the group of automorphisms. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: vp = '(0,15,3,6,8)(1,14,18,10,9,12,5,19)(2,7,4,17,11)(13,16)' sage: fp = '(0,19,14)(1,8,10,17,13,9,6,2,15)(3,11,18,5,7)(4,12,16)' sage: cm = FatGraph(vp, fp) sage: any(cm._is_canonical(i)[0] for i in range(20)) True A genus 1 example with 4 symmetries:: sage: vp = '(0,8,6,4,3,7)(1,9,11,5,2,10)' sage: fp = '(0,10,9)(2,4,11)(1,7,8)(3,5,6)' sage: cm = FatGraph(vp, fp) sage: for i in range(12): ....: test, aut_grp = cm._is_canonical(i) ....: if test: print(aut_grp.group_cardinality()) 4 4 4 4 """ roots = self._good_starts(i0) if roots is None: return False, None if len(roots) == 1: return True, None # perform complete relabelling P = PermutationGroupOrbit(self._n, [], roots) i = next(P) assert i == i0 best = self._canonical_labelling_from(i) rel0 = perm_invert(best[2]) for i in P: test, cur = self._canonical_labelling_from_if_better(best, i) if test == 1: return False, None elif test == 0: fc, fd, rel = cur aut = perm_compose(rel, rel0) P.add_generator(aut) return True, P
[docs] def automorphism_vertex_action(self, g): r""" Return the action of ``g`` on vertices. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: r = FatGraph('(0,5,4)(1,2,3)', '(0,3,1,4)(2)(5)') sage: A = r.automorphism_group() sage: r.automorphism_vertex_action(A.gens()[0]) [1, 0] """ if not perm_check(g, self._n): raise ValueError('g must be a permutation') vp = self._vp vl = self._vl p = [-1] * self._nv for i in range(self._n): if vp[i] == -1: continue if p[vl[i]] == -1: p[vl[i]] = vl[g[i]] elif p[vl[i]] != vl[g[i]]: raise ValueError('not an automorphism') return p
[docs] def automorphism_face_action(self, g): r""" Return the action of ``g`` on faces. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: r = FatGraph('(0,5,4)(1,2,3)', '(0,3,1,4)(2)(5)') sage: A = r.automorphism_group() sage: r.automorphism_face_action(A.gens()[0]) [0, 2, 1] """ if not perm_check(g, self._n): raise ValueError('g must be a permutation') fp = self._fp fl = self._fl p = [-1] * self._nf for i in range(self._n): if fp[i] == -1: continue if p[fl[i]] == -1: p[fl[i]] = fl[g[i]] elif p[fl[i]] != fl[g[i]]: raise ValueError('not an automorphism') return p
[docs] def automorphism_group(self, fix_vertices=False, fix_edges=False, fix_faces=False): r""" EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: from surface_dynamics.misc.permutation import perm_conjugate The four unicellular map with 4 edges in genus 2:: sage: cm0 = FatGraph.from_unicellular_word([0,1,0,1,2,3,2,3]) sage: cm1 = FatGraph.from_unicellular_word([0,1,0,2,1,3,2,3]) sage: cm2 = FatGraph.from_unicellular_word([0,1,0,2,3,1,2,3]) sage: cm3 = FatGraph.from_unicellular_word([0,1,2,3,0,1,2,3]) sage: for cm in [cm0, cm1, cm2, cm3]: ....: P = cm.automorphism_group() ....: print(P.group_cardinality()) ....: vp = cm.vertex_permutation() ....: fp = cm.face_permutation() ....: for a in P.gens(): ....: pp = perm_conjugate(vp, a) ....: assert pp == vp, (vp, pp) 2 1 1 8 sage: cm = FatGraph.from_unicellular_word([0,1,2,3,0,4,1,2,3,4]) sage: cm.automorphism_group().group_cardinality() 2 An example with two faces:: sage: vp = '(0,9,6,5,7,4,8,2,1,3)' sage: fp = '(0,2,1,3,8)(4,6,5,7,9)' sage: cm = FatGraph(vp, fp) sage: cm.automorphism_group() PermutationGroupOrbit(10, [(0,4)(1,5)(2,6)(3,7)(8,9)]) One can compute face stabilizer:: sage: r = FatGraph('(0,5,4)(1,2,3)', '(0,3,1,4)(2)(5)') sage: r.automorphism_group().group_cardinality() 2 sage: r.automorphism_group(fix_faces=True).group_cardinality() 1 sage: r = FatGraph('(0,4,3)(5,2,1)', '(0,2,4,1,3,5)') sage: A = r.automorphism_group() sage: A.group_cardinality() 6 sage: r.automorphism_group(fix_faces=True) == A True sage: r = FatGraph('(0,2,1,3)', '(0,2,1,3)') sage: r.automorphism_group().group_cardinality() 4 """ # NOTE: alternatively, one can compute the centralizer # self._symmetric_group().centralizer(self.monodromy_group()) if fix_edges: raise NotImplementedError if not self.is_connected(): raise NotImplementedError('not implemented for non-connected graphs') roots = self._good_starts(fix_vertices=fix_vertices, fix_faces=fix_faces) P = PermutationGroupOrbit(self._n, [], roots) if len(roots) == 1: return P i0 = next(P) best = self._canonical_labelling_from(i0) rel0 = perm_invert(best[2]) for i in P: test, cur = self._canonical_labelling_from_if_better(best, i) if test == 1: rel0 = perm_invert(cur[2]) best = cur elif test == 0: fc, fd, rel = cur aut = perm_compose(rel, rel0) if ((not fix_vertices or perm_is_on_list_stabilizer(aut, self._vl, self._n)) and (not fix_faces or perm_is_on_list_stabilizer(aut, self._fl, self._n))): P.add_generator(aut) return P
[docs] def relabel(self, r): r""" Relabel according to the permutation ``r``. EXAMPLES:: sage: from surface_dynamics.topology.fat_graph import FatGraph sage: from surface_dynamics.misc.permutation import perm_on_list_inplace, perm_invert sage: cm = FatGraph('(0,11,9,14,7,10,12,4,2,1,3)(5,15,8,6)(13)', ....: '(0,2,1,3,4,6,14,5,12,13,10)(7,8,11)(9,15)') sage: r = [4,5,8,9,1,0,11,10,15,14,2,3,7,6,12,13] sage: cm.relabel(r) sage: cm._check() """ n = self._n if any(r[i] ^ 1 != r [i ^ 1] for i in range(n)): raise ValueError('invalid relabelling permutation') perm_conjugate_inplace(self._vp, r, n) perm_conjugate_inplace(self._fp, r, n) perm_on_list_inplace(r, self._vl, n) perm_on_list_inplace(r, self._fl, n)