r"""
Constellations
A constellation is a tuple `(g_0, g_1, \dots, g_k)` of permutations
such that the product `g_0 g_1 ... g_k` is the identity. One often
assumes that the group generated by `g_0, g_1, \dots, g_k` acts
transitively ([LanZvo04]_ definition 1). Geometrically, it corresponds
to a covering of the 2-sphere ramified over `k` points (the transitivity
condition corresponds to the connectivity of the covering).
.. NOTE::
The permutations are on `[0, n-1]` and not on `[1, n]` for
algorithmic and practical reasons.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation, Constellations
sage: c = Constellation(['(0,1)', '(0,2)', None])
sage: c
Constellation of length 3 and degree 3
g0 (0,1)(2)
g1 (0,2)(1)
g2 (0,2,1)
sage: C = Constellations(3,4); C
Connected constellations of length 3 and degree 4
sage: C.cardinality()
426
"""
# ****************************************************************************
# Copyright (C) 2010 Vincent Delecroix <20100.delecroix@gmail.com>
#
# Distributed under the terms of the GNU General Public License (GPL)
# as published by the Free Software Foundation; either version 2 of
# the License, or (at your option) any later version.
# https://www.gnu.org/licenses/
# ****************************************************************************
from __future__ import print_function, absolute_import, division
from six.moves import range, zip, filter
from sage.structure.parent import Parent
from sage.structure.element import Element
from sage.structure.unique_representation import UniqueRepresentation
from sage.rings.integer import Integer
from sage.combinat.partition import Partition
from sage.structure.sage_object import SageObject
from sage.groups.perm_gps.permgroup_element import PermutationGroupElement
from sage.graphs.graph import Graph
# we import everything from sage.misc.permutation
from surface_dynamics.misc.permutation import *
ZZ_0 = Integer(0)
# constructors
[docs]
def Constellations(*data, **options):
r"""
Build a set of constellations.
INPUT:
- ``profile`` -- an optional profile
- ``length`` -- an optional length
- ``degree`` -- an optional degree
- ``connected`` -- an optional boolean
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation, Constellations
The set of all constellations::
sage: Constellations()
Connected constellations
Constellations with constrained length and degree::
sage: Constellations(4,2)
Connected constellations of length 4 and degree 2
"""
profile = options.get('profile', None)
length = options.get('length', None)
degree = options.get('degree', None)
connected = options.get('connected', True)
if data:
if len(data) == 1:
if isinstance(data[0],(tuple,list)):
profile = data[0]
else:
length = Integer(data[0])
elif len(data) == 2:
length = Integer(data[0])
degree = Integer(data[1])
if profile:
profile = tuple(map(Partition,profile))
return Constellations_p(profile, bool(connected))
if degree is None and length is None:
return Constellations_all(bool(connected))
elif degree is not None and length is not None:
return Constellations_ld(Integer(length), Integer(degree), bool(connected))
else:
raise NotImplementedError("one cannot give just degree or just length")
[docs]
def Constellation(g=None, mutable=False, connected=True, check=True):
r"""
Constellation
INPUT:
- ``g`` -- a list of permutations
- ``mutable`` -- whether the result is mutable or not. Default is ``False``.
- ``connected`` -- whether the result should be connected. Default is
``True``.
- ``check`` -- whether or not to check. If it is ``True``, then the
list g must contains no ``None``.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
Simple initialization::
sage: Constellation(['(0,1)','(0,3)(1,2)','(0,3,1,2)'])
Constellation of length 3 and degree 4
g0 (0,1)(2)(3)
g1 (0,3)(1,2)
g2 (0,3,1,2)
One of the permutation can be omitted::
sage: Constellation(['(0,1)', None, '(0,4)(1,2,3)'])
Constellation of length 3 and degree 5
g0 (0,1)(2)(3)(4)
g1 (0,3,2,1,4)
g2 (0,4)(1,2,3)
One can define mutable constellations::
sage: Constellation(([0,2,1], [2,1,0], [1,2,0]), mutable=True)
Constellation of length 3 and degree 3
g0 (0)(1,2)
g1 (0,2)(1)
g2 (0,1,2)
"""
return Constellations(connected=connected)(g,check=check,mutable=mutable)
# classes
[docs]
class Constellation_class(Element):
r"""
Constellation
A constellation or a tuple of permutations `(g_0,g_1,...,g_k)`
such that the product `g_0 g_1 ... g_k` is the identity.
"""
def __init__(self, parent, g, check=True, connected=True, mutable=False):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation([[1,2,0],[0,2,1],[1,0,2],None])
sage: c == loads(dumps(c))
True
sage: g0 = '(0,1)(2,4)'
sage: g1 = '(0,3)(1,4)'
sage: g2 = '(2,4,3)'
sage: g3 = '(0,3)(1,2)'
sage: c0 = Constellation([g0,g1,g2,g3])
sage: c0 == Constellation([None,g1,g2,g3])
True
sage: c0 == Constellation([g0,None,g2,g3])
True
sage: c0 == Constellation([g0,g1,None,g3])
True
sage: c0 == Constellation([g0,g1,g2,None])
True
"""
Element.__init__(self, parent)
self._connected = connected
self._mutable = mutable
self._g = g
if check:
self._check()
def __hash__(self):
r"""
Return a hash for ``self``
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: c.__hash__() # random
2148362403144019871
"""
if self._mutable:
raise ValueError("can not hash mutable constellation")
return hash(tuple(map(tuple, self._g)))
[docs]
def set_immutable(self):
r"""
Does nothing, as ``self`` is already immutable
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: c.set_immutable()
sage: c.is_mutable()
False
"""
self._mutable = False
[docs]
def is_mutable(self):
r"""
Return ``False`` as ``self`` is immutable
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: c.is_mutable()
False
"""
return self._mutable
[docs]
def switch(self, i, j0, j1):
r"""
Switch the vertices and edges at `i` and `i+1`
The modification is local in the sense that it modifies `g_i`
and `g_{i+1}` but does not modify the product `g_i g_{i+1}`.
| j0 -- g_i --> k0 -- g_i0 --> l0
| j1 -- g_i+1 --> k1 -- g_i+1 --> l1
becomes
| j0 -- g_i --> k1 -- g_i --> l0
| j1 -- g_i+1 --> k1 -- g_i+1 --> l1
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None], mutable=True); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: c.switch(1,2,3); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2,3)
g2 (0,1,3,4)(2)
"""
if not self._mutable:
raise ValueError("this constellation is immutable. Take a mutable copy first.")
perm_switch(self._g[i], self._g[i+1], j0, j1)
def _set_g_unsafe(self, i, j, k):
r"""
set gi[j] to k
Advice: try a _check() after your modification
TESTS::
sage: from surface_dynamics import *
sage: c = Constellation([[1,0],[0,1],[1,0]], mutable=True)
sage: c
Constellation of length 3 and degree 2
g0 (0,1)
g1 (0)(1)
g2 (0,1)
sage: c._set_g_unsafe(0,0,0)
sage: c._set_g_unsafe(0,1,1)
sage: c._set_g_unsafe(1,0,1)
sage: c._set_g_unsafe(1,1,0)
sage: c
Constellation of length 3 and degree 2
g0 (0)(1)
g1 (0,1)
g2 (0,1)
sage: c._check()
"""
if not self._mutable:
raise ValueError("not mutable")
self._g[i][j] = int(k)
[docs]
def euler_characteristic(self):
r"""
Return the Euler characteristic of the surface
ALGORITHM:
Hurwitz formula
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)', '(0,2)', None])
sage: c.euler_characteristic()
2
"""
return Integer(self.degree()*2 -
sum(sum(i-1 for i in self.profile(i))
for i in range(self.length())))
[docs]
def genus(self):
r"""
Returns the genus of the surface
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)', '(0,2)', None])
sage: c.genus()
0
"""
return 1 - self.euler_characteristic()/2
def _check(self):
r"""
Check that the constellation is valid and if not raise ValueError
TESTS::
sage: from surface_dynamics import *
sage: c = Constellation([[1,0],[1,0]], mutable=True)
sage: c._set_g_unsafe(0,0,0)
sage: c._check()
Traceback (most recent call last):
...
ValueError: permutation 0 invalid
sage: c._set_g_unsafe(0,1,1)
sage: c._check()
Traceback (most recent call last):
...
ValueError: The product is not identity
sage: c._set_g_unsafe(1,0,0)
sage: c._set_g_unsafe(1,1,1)
sage: c._check()
Traceback (most recent call last):
...
ValueError: not connected
"""
for i in range(self.length()):
if not perm_check(self._g[i]):
raise ValueError("permutation {} invalid".format(i))
h = perm_one(self.degree())
for p in self._g:
h = perm_compose(h, p)
if not perm_is_one(h):
raise ValueError("The product is not identity")
if self._connected and not perms_are_transitive(self._g):
raise ValueError("not connected")
def __copy__(self):
r"""
TESTS::
sage: from surface_dynamics import *
sage: c = Constellation([[0,2,1],[1,0,2],[2,1,0],None])
sage: c == copy(c)
True
sage: c is copy(c)
False
sage: c = Constellation([[0,2,1],[1,0,2],[2,1,0],None],mutable=True)
sage: c == copy(c)
True
sage: c is copy(c)
False
"""
return self.parent()([gg[:] for gg in self._g],
check=False,
mutable=self._mutable)
copy = __copy__
[docs]
def mutable_copy(self):
r"""
Return a mutable copy of ``self``
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False)
sage: d = c.mutable_copy()
sage: d.is_mutable()
True
"""
return self.parent()([gg[:] for gg in self._g],
check=False,
mutable=True)
## GENERAL PROPERTIES
[docs]
def is_connected(self):
r"""
Test of connectedness
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False)
sage: c.is_connected()
False
sage: c = Constellation(['(0,1,2)', None], connected=False)
sage: c.is_connected()
True
"""
if self._connected:
return True
else:
return perms_are_transitive(self._g)
[docs]
def connected_components(self):
"""
Returns the connected components ?
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False)
sage: c.connected_components()
[Constellation of length 3 and degree 2
g0 (0,1)
g1 (0)(1)
g2 (0,1), Constellation of length 3 and degree 1
g0 (0)
g1 (0)
g2 (0)]
sage: c = Constellation(['(0,1,2)', None], connected=False)
sage: c.connected_components()
[Constellation of length 2 and degree 3
g0 (0,1,2)
g1 (0,2,1)]
"""
if self._connected:
return [self]
G = Graph(loops=True, multiedges=True)
for p in self._g:
G.add_edges(enumerate(p))
m = G.connected_components(sort=True)
if len(m) == 1:
return [self]
for mm in m:
mm.sort()
m.sort()
g = [[] for _ in range(len(m))]
m_inv = [None]*self.degree()
for t in range(len(m)):
for i in range(len(m[t])):
m_inv[m[t][i]] = i
for k in range(self.length()):
tmp = [None]*len(m[t])
for i in range(len(m[t])):
tmp[i] = m_inv[self._g[k][m[t][i]]]
g[t].append(tmp)
return [Constellation(g=g[i], check=False) for i in range(len(m))]
def __eq__(self, other):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellation
sage: Constellation(['(0,1,2)', None]) == Constellation(['(0,1,2)', None])
True
sage: Constellation(['(0,1)','(0,2)',None]) == Constellation(['(0,1)',None,'(0,2)'])
False
"""
return type(self) == type(other) and self._g == other._g
def __ne__(self, other):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellation
sage: Constellation(['(0,1,2)', None]) != Constellation(['(0,1,2)', None])
False
sage: Constellation(['(0,1)','(0,2)',None]) != Constellation(['(0,1)',None,'(0,2)'])
True
"""
return type(self) != type(other) or self._g != other._g
[docs]
def is_isomorphic(self, other, return_map=False):
r"""
Test of isomorphism
Returns ``True`` if the constellations are isomorphic (i.e. common conjugacy)
and returns the permutation that conjugate the two permutations if
return_map is ``True`` in such a way that self.relabel(m) == other
ALGORITHM:
uses canonical labels obtained from the method :meth:`relabel`.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation([[1,0,2],[2,1,0],[0,2,1],None])
sage: d = Constellation([[2,1,0],[0,2,1],[1,0,2],None])
sage: answer, mapping = c.is_isomorphic(d,return_map=True)
sage: answer
True
sage: c.relabel(mapping) == d
True
"""
if return_map:
if (self.degree() != other.degree() or
self.length() != other.length()):
return False, None
sn, sn_map = self.relabel(return_map=True)
on, on_map = other.relabel(return_map=True)
if sn != on:
return False, None
return True, perm_compose(sn_map, perm_invert(on_map))
return (self.degree() == other.degree() and
self.length() == other.length() and
self.relabel() == other.relabel())
def __lt__(self, other):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c1 = Constellation([[1,2,0],None])
sage: c2 = Constellation([[2,0,1],None])
sage: c1 == c2
False
sage: c1 != c2
True
sage: c1 < c2 or c1 <= c2
True
sage: c1 > c2 or c1 >= c2
False
sage: c2 < c1 or c2 <= c1
False
sage: c2 > c1 and c2 >= c1
True
"""
if type(self) != type(other):
raise TypeError
if self.length() < other.length():
return True
elif self.length() > other.length():
return False
if self.degree() < other.degree():
return True
elif self.degree() > other.degree():
return False
for i in range(self.length()-1):
for j in range(self.degree()-1):
if self._g[i][j] < other._g[i][j]:
return True
elif self._g[i][j] > other._g[i][j]:
return False
# equality
return False
def __le__(self, other):
return self == other or self < other
def __ge__(self, other):
return not self < other
def __gt__(self, other):
return not self <= other
def _repr_(self):
r"""
String representation
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation([[1,0,2],[2,1,0],[0,2,1],None])
sage: c._repr_()
'Constellation of length 4 and degree 3\ng0 (0,1)(2)\ng1 (0,2)(1)\ng2 (0)(1,2)\ng3 (0,2)(1)'
"""
s = "Constellation of length %d and degree %d" % (self.length(), self.degree())
for i in range(self.length()):
s += "\ng%d %s" % (i, perm_cycle_string(self._g[i], True))
return s
[docs]
def degree(self):
r"""
Return the degree of the constellation
The degree of a constellation is the number `n` that
corresponds to the symmetric group `S(n)` in which the
permutations of the constellation are defined.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c=Constellation(['(0,1)',None])
sage: c.degree()
2
sage: c=Constellation(['(0,1)','(0,3,2)(1,5)',None,'(4,3,2,1)'])
sage: c.degree()
6
"""
return ZZ_0 if len(self._g) == 0 else Integer(len(self._g[0]))
[docs]
def length(self):
r"""
Number of permutations
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)','(0,2)','(0,3)',None])
sage: c.length()
4
sage: c = Constellation(['(0,1,3)',None,'(1,2)'])
sage: c.length()
3
"""
return len(self._g)
[docs]
def profile(self, i=None):
r"""
Return the profile of ``self``
The profile of a constellation is the tuple of partitions
associated to the conjugacy classes of the permutations of the
constellation.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None])
sage: c.profile()
([3, 2], [2, 1, 1, 1], [5])
"""
if i is None:
return tuple(self.profile(j) for j in range(self.length()))
else:
return Partition(sorted(map(len, perm_cycles(self._g[i], True)), reverse=True))
passport = profile
## ACCESS TO INDIVIDUAL PERMUTATION
[docs]
def g(self, i=None):
r"""
Return the permutation i of the constellation as a list
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None])
sage: c.g(0)
[1, 2, 0, 4, 3]
sage: c.g(1)
[3, 1, 2, 0, 4]
sage: c.g(2)
[4, 0, 1, 2, 3]
"""
from copy import copy
if i is None:
return list(map(copy, self._g))
else:
return copy(self._g[i])
[docs]
def g_cycle_tuples(self, i, singletons=False):
r"""
Return the tuples associated to the cycles of the permutations of ``self``
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(0,4)(1,3)',None])
sage: c.g_cycle_tuples(0)
[[0, 1], [2, 3, 4]]
sage: c.g_cycle_tuples(1)
[[0, 4], [1, 3]]
"""
if i is None:
return [perm_cycles(p, singletons) for p in self._g]
else:
return perm_cycles(self._g[i], singletons)
[docs]
def g_cycle_string(self, i, singletons=False):
r"""
Return the permutations of a constellation, as cycles
If `i` is ``None``, return all of them
Otherwise, return just the permutation `g_i` as a cycle
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(0,4)(1,3)',None])
sage: c.g_cycle_string(None)
['(0,1)(2,3,4)', '(0,4)(1,3)', '(0,3)(1,2,4)']
sage: c.g_cycle_string(2)
'(0,3)(1,2,4)'
"""
if i is None:
return [perm_cycle_string(p, singletons) for p in self._g]
else:
return perm_cycle_string(self._g[i], singletons)
[docs]
def g_next(self, i, j):
r"""
Return the image of `j` for the permutation `g_i` in constant time
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(1,2,0,5)','(2,3,4)(5,1)',None])
sage: c.g_next(0,0)
5
sage: all(c.g(i)[j] == c.g_next(i,j) for i in range(3) for j in range(6))
True
"""
if i is None:
return [p[j] for p in self._g]
else:
return self._g[i][j]
[docs]
def g_prev(self, i, j):
r"""
Return the image of `j` for the permutation `g_i` in constant time
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1,2)(3,4)','(0,4,2)',None])
sage: c.g_prev(0,0)
2
sage: all(c.g(i)[c.g_prev(i,j)] == j for i in range(3) for j in range(5))
True
"""
if i is None:
return [self.g_prev(k, j) for k in range(self.length())]
else:
for k in range(i+1, self.length()):
j = self._g[k][j]
for k in range(0, i):
j = self._g[k][j]
return j
[docs]
def g_orbit(self, i, j):
r"""
Returns the orbit of `j` under `g_i`
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None])
sage: c.g_orbit(0,3)
[3, 4, 2]
sage: c.g_orbit(1,0)
[0]
"""
if i is None:
return [self.g_orbit(k, j) for k in range(self.length())]
else:
return perm_orbit(self._g[i], j)
[docs]
def relabel(self, perm=None, return_map=False):
r"""
Relabel ``self``.
If ``perm`` is provided then relabel with respect to ``perm``. Otherwise
use canonical labels. In that case, if ``return_map`` is provided, the
return also the map used for canonical labels.
Algorithm:
the cycle for g(0) are adjacent and the cycle are joined with
respect to the other permutations. The minimum is taken for
all possible renumerotations.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: c2 = c.relabel(); c2
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,2)(3)(4)
g2 (0,1,4,3,2)
The map returned when the option ``return_map`` is set to True can be
used to set the relabelling::
sage: c3, perm = c.relabel(return_map=True)
sage: c3 == c2 and c3 == c.relabel(perm=perm)
True
sage: d = c.relabel([4,3,1,0,2]); d
Constellation of length 3 and degree 5
g0 (0,2,1)(3,4)
g1 (0)(1)(2,3)(4)
g2 (0,1,2,4,3)
sage: d.is_isomorphic(c)
True
We check that after a random relabelling the new constellation is
isomorphic to the initial one::
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None])
sage: p = SymmetricGroup(c.degree()).random_element()
sage: cc = c.relabel([x-1 for x in p.domain()]).relabel()
sage: cc.is_isomorphic(c)
True
"""
if perm is not None:
perm.extend(range(len(perm), self.degree()))
g = [[None]*self.degree() for _ in range(self.length())]
for i in range(len(perm)):
for k in range(self.length()):
g[k][perm[i]] = perm[self._g[k][i]]
return Constellation(g=g, check=False, mutable=self.is_mutable())
if return_map:
try:
return self._normal_form, self._normal_form_map
except AttributeError:
pass
else:
try:
return self._normal_form
except AttributeError:
pass
# compute canonical labels
if not self.is_connected():
raise ValueError("No canonical labels implemented for non connected constellation")
c_win, m_win = perms_canonical_labels(self._g)
c_win = self.parent()(c_win, mutable=False, check=False)
if not self.is_mutable():
self._normal_form = c_win
self._normal_form_map = m_win
c_win._normal_form = c_win
c_win._normal_form_map = m_win
if return_map:
return c_win, m_win
else:
return c_win
# BRAID GROUP ACTION
[docs]
def braid_group_action(self, i):
r"""
Acts on self as the braid group generator that exchanges
position `i` and `i+1`
INPUT:
- ``i`` -- integer in `[0, n-1]` where `n` is the length of self
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: sigma = lambda c, i: c.braid_group_action(i)
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: sigma(c, 1)
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0,1,3,2,4)
g2 (0,3)(1)(2)(4)
Check the commutation relation::
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)','(2,5)(0,4)',None])
sage: d = Constellation(['(0,1,3,5)','(2,3,4)','(0,3,5)',None])
sage: c13 = sigma(sigma(c, 0), 2)
sage: c31 = sigma(sigma(c, 2), 0)
sage: c13 == c31
True
sage: d13 = sigma(sigma(d, 0), 2)
sage: d31 = sigma(sigma(d, 2), 0)
sage: d13 == d31
True
Check the braid relation::
sage: c121 = sigma(sigma(sigma(c, 1), 2), 1)
sage: c212 = sigma(sigma(sigma(c, 2), 1), 2)
sage: c121 == c212
True
sage: d121 = sigma(sigma(sigma(d, 1), 2), 1)
sage: d212 = sigma(sigma(sigma(d, 2), 1), 2)
sage: d121 == d212
True
"""
if i < 0 or i >= self.length():
raise ValueError("i should be between 0 and %d"%(self.length()-1))
j = i+1
if j == self.length(): # wrap around the cylinder
j = 0
h = self.copy()
si = self._g[i]
sj = self._g[j]
h._g[i] = sj
h._g[j] = perm_compose(perm_compose(perm_invert(sj), si), sj)
return h
[docs]
def braid_group_orbit(self):
r"""
Returns the graph of the action of the braid group.
The action is considered up to isomorphism of constellation.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c
Constellation of length 3 and degree 5
g0 (0,1)(2,3,4)
g1 (0)(1,4)(2)(3)
g2 (0,1,3,2,4)
sage: G = c.braid_group_orbit()
sage: G.num_verts()
4
sage: G.num_edges()
12
"""
from sage.graphs.digraph import DiGraph
G = DiGraph(multiedges=True, loops=True)
waiting = [self.relabel()]
while waiting:
c = waiting.pop()
G.add_vertex(c)
for i in range(self.length()):
cc = self.braid_group_action(i).relabel()
if cc not in G:
waiting.append(cc)
G.add_edge(c, cc, i)
return G
[docs]
class Constellations_all(UniqueRepresentation, Parent):
Element = Constellation_class
def __init__(self, connected=True):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: TestSuite(Constellations()).run()
"""
from sage.categories.infinite_enumerated_sets import InfiniteEnumeratedSets
Parent.__init__(self, category=InfiniteEnumeratedSets())
self._connected = connected
def __contains__(self,elt):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(connected=True)
sage: D = Constellations(connected=False)
sage: C([[1,0],None]) in C
True
sage: C([[1,0],None]) in D
True
sage: D([[1,0],None]) in C
True
sage: D([[1,0],None]) in D
True
sage: D([[0,1],None]) in C
False
sage: D([[0,1],None]) in D
True
"""
return isinstance(elt, Constellation_class) and (not self._connected or elt.is_connected())
def _repr_(self):
r"""
String representation.
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: Constellations() # indirect doctest
Connected constellations
"""
if self._connected:
return "Connected constellations"
else:
return "Constellations"
def _element_constructor_(self, g, check=True, mutable=False):
r"""
Returns a constellation.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellation
sage: Constellation([[1,0],[1,0]]) # indirect doctest
Constellation of length 2 and degree 2
g0 (0,1)
g1 (0,1)
"""
if g is None or len(g) == 0:
gg = []
else:
if g.count(None) == 0:
i = None
elif g.count(None) == 1:
i = g.index(None)
del g[i]
else:
raise ValueError("only one permutation must be None")
gg = list(map(perm_init, g))
equalize_perms(gg)
if i is not None:
h = range(len(gg[0]))
for p in gg[i:]:
h = perm_compose(h, p)
for p in gg[:i]:
h = perm_compose(h, p)
gg.insert(i, perm_invert(h))
return self.element_class(self, gg, check, self._connected, mutable)
[docs]
def an_element(self):
r"""
Return a constellation.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: Constellations().an_element()
Constellation of length 2 and degree 2
g0 (0,1)
g1 (0,1)
"""
return Constellations(2,2).an_element()
def __iter__(self):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: I = iter(Constellations())
sage: for _ in range(100): print(next(I))
Constellation of length 1 and degree 1
g0 (0)
Constellation of length 2 and degree 1
g0 (0)
g1 (0)
Constellation of length 3 and degree 1
g0 (0)
g1 (0)
g2 (0)
Constellation of length 2 and degree 2
g0 (0,1)
g1 (0,1)
...
Constellation of length 4 and degree 3
g0 (0)(1,2)
g1 (0)(1,2)
g2 (0,2,1)
g3 (0,1,2)
Constellation of length 4 and degree 3
g0 (0)(1,2)
g1 (0)(1,2)
g2 (0,2)(1)
g3 (0,2)(1)
"""
n = 2
while True:
for d in range(1, n):
l = n - d
yield from Constellations(l, d, connected=self._connected)
n += 1
[docs]
class Constellations_ld(UniqueRepresentation, Parent):
r"""
Constellations of given length and degree.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(2,3); C
Connected constellations of length 2 and degree 3
sage: C([[1,2,0],[2,0,1]])
Constellation of length 2 and degree 3
g0 (0,1,2)
g1 (0,2,1)
sage: C.cardinality()
2
sage: Constellations(2,3,connected=False).cardinality()
6
"""
def __init__(self, length, degree, connected=True):
"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: TestSuite(Constellations(length=3,degree=4)).run()
"""
from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets
Parent.__init__(self, facade=Constellations_all(), category=FiniteEnumeratedSets())
self._length = Integer(length)
self._degree = Integer(degree)
if self._length <= 0:
raise ValueError("length should be a positive integer")
if self._degree <= 0:
raise ValueError("degree should be a positive integer")
self._connected = bool(connected)
def __contains__(self, elt):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(2,3,connected=True)
sage: D = Constellations(2,3,connected=False)
sage: C([[2,0,1],None]) in C
True
sage: D([[2,0,1],None]) in C
True
sage: D([[2,0,1],None]) in D
True
sage: D([[0,1,2],None]) in C
False
sage: D([[0,1,2],None]) in D
True
"""
if elt not in Constellations(connected=self._connected):
return False
return elt.length() == self._length and elt.degree() == self._degree
[docs]
def first(self):
r"""
Returns the first element in lexicographic order
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: const = Constellations(3,3);const
Connected constellations of length 3 and degree 3
sage: const.first()
Constellation of length 3 and degree 3
g0 (0,1,2)
g1 (0,1,2)
g2 (0,1,2)
"""
if self._connected:
g = [str(tuple(range(self._degree)))] * self._length
else:
g = [range(d)] * self._length
return self(g, check=False)
[docs]
def last(self):
r"""
Returns the last element in lexicographic order
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: const=Constellations(3,3);const
Connected constellations of length 3 and degree 3
sage: const.last()
Constellation of length 3 and degree 3
g0 (0,2,1)
g1 (0,2,1)
g2 (0,2,1)
"""
if self._connected:
g = [str(tuple(range(self._degree-1, -1, -1)))] * self._length
else:
g = [range(d-1,-1,-1)] * self._length
return Constellation(g, check=False, mutable=False)
def _repr_(self):
"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: Constellations(3,3)._repr_()
'Connected constellations of length 3 and degree 3'
sage: Constellations(3,3,connected=False)._repr_()
'Constellations of length 3 and degree 3'
"""
s = "of length %d and degree %d" % (self._length, self._degree)
if self._connected:
return "Connected constellations " + s
return "Constellations " + s
def __iter__(self):
"""
iterator over all constellations of given degree and length
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: const = Constellations(3,3); const
Connected constellations of length 3 and degree 3
sage: len([v for v in const])
26
One can check the first few terms of sequence :oeis:`220754`::
sage: Constellations(4,1).cardinality()
1
sage: Constellations(4,2).cardinality()
7
sage: Constellations(4,3).cardinality()
194
sage: Constellations(4,4).cardinality() # long time
12858
"""
from sage.arith.srange import srange
from itertools import product, permutations
if self._length == 1:
if self._degree == 1:
yield self([[0]])
return
for p in product(permutations(srange(self._degree)), repeat=self._length-1):
if self._connected and not perms_are_transitive(p):
continue
yield self(list(map(list,p))+[None], check=False)
[docs]
def random_element(self, mutable=False):
r"""
a random element
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: const = Constellations(3,3)
sage: const.random_element()
Constellation of length 3 and degree 3
...
...
...
sage: c = const.random_element()
sage: c.degree() == 3 and c.length() == 3
True
"""
from sage.groups.perm_gps.permgroup_named import SymmetricGroup
from sage.groups.perm_gps.permgroup import PermutationGroup
l = self._length
d = self._degree
g = [SymmetricGroup(d).random_element() for _ in range(l-1)]
G = PermutationGroup(g)
while not G.degree() == d or (self._connected and not G.is_transitive()):
g = [SymmetricGroup(d).random_element() for _ in range(l-1)]
G = PermutationGroup(g)
return self(list(map(permutation_to_perm, g))+[None], mutable=mutable)
def _element_constructor_(self, *data, **options):
r"""
Build an element of self.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(2,3)
sage: C([[1,2,0],[2,0,1]])
Constellation of length 2 and degree 3
g0 (0,1,2)
g1 (0,2,1)
sage: C([[2,1,0],[2,1,0]])
Traceback (most recent call last):
...
ValueError: not connected
"""
c = Constellations(connected=self._connected)(*data, **options)
if c.degree() != self._degree:
raise ValueError("not able to build a constellation of degree %d from the given data"%self._degree)
if c.length() != self._length:
raise ValueError("not able to build a constellation of length %d from the given data"%self._length)
return c
[docs]
def an_element(self):
r"""
Return a constellation in ``self``.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: Constellations(2,3).an_element()
Constellation of length 2 and degree 3
g0 (0,2,1)
g1 (0,1,2)
sage: Constellations(7,3).an_element()
Constellation of length 7 and degree 3
g0 (0,2,1)
g1 (0,1,2)
g2 (0)(1)(2)
g3 (0)(1)(2)
g4 (0)(1)(2)
g5 (0)(1)(2)
g6 (0)(1)(2)
"""
if self._degree == 0 and self._length == 0:
return self()([])
elif self._length == 1:
if self._degree > 1:
from sage.categories.sets_cat import EmptySetError
raise EmptySetError
return self()([[0]])
d = self._degree
if self._connected:
g = [[d-1] + list(range(d-1)), list(range(1,d)) + [0]] + [list(range(d))]*(self._length-2)
else:
g = [list(range(d))]*self._length
return self(g)
[docs]
def braid_group_action(self):
r"""
List of graphs that corresponds to the braid group action on ``self`` up
to isomorphism.
OUTPUT:
- list of graphs
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(3,3)
sage: C.braid_group_action()
[Looped multi-digraph on 3 vertices,
Looped multi-digraph on 3 vertices,
Looped multi-digraph on 1 vertex]
"""
G = []
for c in self:
c = c.relabel()
if any(c in g for g in G):
continue
G.append(c.braid_group_orbit())
return G
[docs]
def braid_group_orbits(self):
r"""
Orbits under the action of braid group.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(3,3)
sage: O = C.braid_group_orbits()
sage: len(O)
3
sage: [x.profile() for x in O[0]]
[([1, 1, 1], [3], [3]), ([3], [1, 1, 1], [3]), ([3], [3], [1, 1, 1])]
sage: [x.profile() for x in O[1]]
[([2, 1], [2, 1], [3]), ([2, 1], [3], [2, 1]), ([3], [2, 1], [2, 1])]
sage: [x.profile() for x in O[2]]
[([3], [3], [3])]
"""
return [g.vertices(sort=True) for g in self.braid_group_action()]
[docs]
class Constellations_p(UniqueRepresentation, Parent):
r"""
Constellations with fixed profile.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations([[3,1],[3,1],[2,2]]); C
Constellations with profile ([3, 1], [3, 1], [2, 2])
sage: C.cardinality()
24
sage: C.first()
Constellation of length 3 and degree 4
g0 (0)(1,2,3)
g1 (0,1,2)(3)
g2 (0,1)(2,3)
sage: C.last()
Constellation of length 3 and degree 4
g0 (0,3,2)(1)
g1 (0,3,1)(2)
g2 (0,1)(2,3)
Note that the cardinality can also be computed using characters of the
symmetric group (Frobenius formula)::
sage: P = Partitions(4)
sage: p1 = Partition([3,1])
sage: p2 = Partition([3,1])
sage: p3 = Partition([2,2])
sage: i1 = P.cardinality() - P.rank(p1) - 1
sage: i2 = P.cardinality() - P.rank(p2) - 1
sage: i3 = P.cardinality() - P.rank(p3) - 1
sage: s = 0
sage: for c in SymmetricGroup(4).irreducible_characters():
....: v = c.values()
....: s += v[i1] * v[i2] * v[i3] / v[0]
sage: c1 = p1.conjugacy_class_size()
sage: c2 = p2.conjugacy_class_size()
sage: c3 = p3.conjugacy_class_size()
sage: c1 * c2 * c3 / factorial(4)**2 * s
1
The number obtained above is up to isomorphism. And we can check::
sage: len(C.isomorphism_representatives())
1
"""
def __init__(self, profile, connected=True):
r"""
OPTIONS:
- ``profile`` -- a list of integer partitions of the same integer
- ``connected`` -- a boolean (default: True) that specify if we consider
only connected constellations.
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations([(3,1),(3,1),(2,2)])
sage: TestSuite(C).run()
"""
l = Integer(len(profile))
d = Integer(sum(profile[0]))
for p in profile[1:]:
if sum(p) != d:
raise ValueError("all partition in the passport should have the same sum.")
from sage.categories.finite_enumerated_sets import FiniteEnumeratedSets
Parent.__init__(self, facade=Constellations_all(), category=FiniteEnumeratedSets())
self._profile = profile
self._degree = d
self._length = l
self._connected = connected
def _repr_(self):
r"""
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: Constellations(([3,2],[2,2,1]))
Constellations with profile ([3, 2], [2, 2, 1])
"""
return "Constellations with profile %s"%(self._profile,)
[docs]
def isomorphism_representatives(self):
r"""
Return a set of isomorphism representative of ``self``.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations([[5], [4,1], [3,2]])
sage: C.cardinality()
240
sage: ir = sorted(C.isomorphism_representatives())
sage: len(ir)
2
sage: ir[0]
Constellation of length 3 and degree 5
g0 (0,1,2,3,4)
g1 (0)(1,2,3,4)
g2 (0,4,2)(1,3)
sage: ir[1]
Constellation of length 3 and degree 5
g0 (0,1,2,3,4)
g1 (0)(1,4,2,3)
g2 (0,4)(1,2,3)
"""
result = set()
for c in self:
cc = c.relabel()
if cc not in result:
result.add(cc)
return result
def _element_constructor_(self, *data, **options):
r"""
Build an element of self.
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations([(3,1),(3,1),(2,2)])
sage: c = C(['(1,2,3)','(0,1,2)','(0,1)(2,3)']); c
Constellation of length 3 and degree 4
g0 (0)(1,2,3)
g1 (0,1,2)(3)
g2 (0,1)(2,3)
sage: C(['(1,2,3)','(0,1,3)',None])
Traceback (most recent call last):
...
ValueError: not able to build a constellation with profile ([3, 1], [3, 1], [2, 2]) from the given data
"""
c = Constellations(connected=self._connected)(*data, **options)
if options.get('check', True):
if c.profile() != self._profile:
raise ValueError("not able to build a constellation with profile %s from the given data"%(self._profile,))
return c
def __iter__(self):
r"""
Iterator of the elements in ``self``.
.. NOTE::
The algorithm is highly non optimized and is *very* slow for large
entries! In order to make a better one, we need an iterator over
conjugacy classes of the symmetric group.
TESTS::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations([(3,1),(3,1),(2,2)])
sage: for c in C: print(c)
Constellation of length 3 and degree 4
g0 (0)(1,2,3)
g1 (0,1,2)(3)
g2 (0,1)(2,3)
Constellation of length 3 and degree 4
g0 (0)(1,2,3)
g1 (0,2,3)(1)
g2 (0,2)(1,3)
...
Constellation of length 3 and degree 4
g0 (0,3,2)(1)
g1 (0,1,2)(3)
g2 (0,3)(1,2)
Constellation of length 3 and degree 4
g0 (0,3,2)(1)
g1 (0,3,1)(2)
g2 (0,1)(2,3)
"""
from sage.arith.srange import srange
from itertools import product, permutations
if self._length == 1:
if self._degree == 1:
yield self([[0]])
return
for p in product(permutations(srange(self._degree)), repeat=self._length-1):
if self._connected and not perms_are_transitive(p):
continue
c = Constellations(connected=self._connected)(list(map(list,p))+[None], check=False)
if c.profile() == self._profile:
yield c
[docs]
def braid_group_action(self):
r"""
List of graphs that corresponds to the braid group action on ``self`` up
to isomorphism.
OUTPUT:
- list of graphs
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(3,3)
sage: C.braid_group_action()
[Looped multi-digraph on 3 vertices,
Looped multi-digraph on 3 vertices,
Looped multi-digraph on 1 vertex]
"""
G = []
for c in self:
c = c.relabel()
if any(c in g for g in G):
continue
G.append(c.braid_group_orbit())
return G
[docs]
def braid_group_orbits(self):
r"""
Orbits under the action of braid group.
EXAMPLES::
sage: from surface_dynamics.misc.constellation import Constellations
sage: C = Constellations(3,3)
sage: O = C.braid_group_orbits()
sage: len(O)
3
sage: [x.profile() for x in O[0]]
[([1, 1, 1], [3], [3]), ([3], [1, 1, 1], [3]), ([3], [3], [1, 1, 1])]
sage: [x.profile() for x in O[1]]
[([2, 1], [2, 1], [3]), ([2, 1], [3], [2, 1]), ([3], [2, 1], [2, 1])]
sage: [x.profile() for x in O[2]]
[([3], [3], [3])]
"""
return [g.vertices(sort=True) for g in self.braid_group_action()]