Source code for surface_dynamics.interval_exchanges.reduced

r"""
Reduced permutations

A reduced (generalized) permutation is better suited to study strata of Abelian
(or quadratic) holomorphic forms on Riemann surfaces. The Rauzy diagram is an
invariant of such a component. Corentin Boissy proved the identification of
Rauzy diagrams with connected components of stratas. But the geometry of the
diagram and the relation with the strata is not yet totally understood.

AUTHORS:

- Vincent Delecroix (2000-09-29): initial version

TESTS::

    sage: from surface_dynamics.interval_exchanges.reduced import ReducedPermutationIET
    sage: ReducedPermutationIET([['a','b'],['b','a']])
    a b
    b a
    sage: ReducedPermutationIET([[1,2,3],[3,1,2]])
    1 2 3
    3 1 2
    sage: from surface_dynamics.interval_exchanges.reduced import ReducedPermutationLI
    sage: ReducedPermutationLI([[1,1],[2,2,3,3,4,4]])
    1 1
    2 2 3 3 4 4
    sage: ReducedPermutationLI([['a','a','b','b','c','c'],['d','d']])
    a a b b c c
    d d
    sage: from surface_dynamics.interval_exchanges.reduced import FlippedReducedPermutationIET
    sage: FlippedReducedPermutationIET([[1,2,3],[3,2,1]],flips=[1,2])
    -1 -2  3
     3 -2 -1
    sage: FlippedReducedPermutationIET([['a','b','c'],['b','c','a']],flips='b')
     a -b  c
    -b  c  a
    sage: from surface_dynamics.interval_exchanges.reduced import FlippedReducedPermutationLI
    sage: FlippedReducedPermutationLI([[1,1],[2,2,3,3,4,4]], flips=[1,4])
    -1 -1
     2  2  3  3 -4 -4
    sage: FlippedReducedPermutationLI([['a','a','b','b'],['c','c']],flips='ac')
    -a -a  b  b
    -c -c
    sage: from surface_dynamics.interval_exchanges.reduced import ReducedRauzyDiagram
    sage: p = ReducedPermutationIET([[1,2,3],[3,2,1]])
    sage: d = ReducedRauzyDiagram(p)
"""
#*****************************************************************************
#       Copyright (C) 2008 Vincent Delecroix <20100.delecroix@gmail.com>
#
#  Distributed under the terms of the GNU General Public License (GPL)
#  as published by the Free Software Foundation; either version 2 of
#  the License, or (at your option) any later version.
#                  https://www.gnu.org/licenses/
#*****************************************************************************

from __future__ import print_function, absolute_import, division
from six.moves import range, map, filter, zip

from sage.structure.sage_object import SageObject

from copy import copy

from sage.combinat.words.alphabet import Alphabet
from sage.rings.integer import Integer

from .template import OrientablePermutationIET, OrientablePermutationLI   # permutations
from .template import FlippedPermutationIET, FlippedPermutationLI         # flipped permutations
from .template import RauzyDiagram, FlippedRauzyDiagram

from .template import interval_conversion, side_conversion


[docs] class ReducedPermutation(SageObject): r""" Template for reduced objects. .. warning:: Internal class! Do not use directly! """ def __getitem__(self, i): r""" TESTS:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b', 'b a', reduced=True) sage: p[0] ['a', 'b'] sage: p[1] ['b', 'a'] sage: p.alphabet([0,1]) sage: p[0] [0, 1] sage: p[1] [1, 0] """ return self.list()[i]
[docs] def ReducedPermutationsIET_iterator( nintervals=None, irreducible=True, alphabet=None): r""" Returns an iterator over reduced permutations INPUT: - ``nintervals`` - integer or None - ``irreducible`` - boolean - ``alphabet`` - something that should be converted to an alphabet of at least nintervals letters TESTS:: sage: from surface_dynamics import * sage: for p in iet.Permutations_iterator(3,reduced=True,alphabet="abc"): ....: print(p) #indirect doctest a b c b c a a b c c a b a b c c b a """ from sage.combinat.permutation import Permutations if irreducible is False: if nintervals is None: raise NotImplementedError("choose a number of intervals") else: assert(isinstance(nintervals,(int,Integer))) assert(nintervals > 0) a0 = range(1,nintervals+1) def f(x): return ReducedPermutationIET([a0, list(x)], alphabet=alphabet, reduced=True) return map(f, Permutations(nintervals)) else: return filter(lambda x: x.is_irreducible(), ReducedPermutationsIET_iterator(nintervals,False,alphabet))
[docs] class ReducedPermutationIET(ReducedPermutation, OrientablePermutationIET): """ Reduced permutation from iet Permutation from iet without numerotation of intervals. For initialization, you should use GeneralizedPermutation which is the class factory for all permutation types. EXAMPLES:: sage: from surface_dynamics import * Equality testing (no equality of letters but just of ordering):: sage: p = iet.Permutation('a b c', 'c b a', reduced = True) sage: q = iet.Permutation('p q r', 'r q p', reduced = True) sage: p == q True Reducibility testing:: sage: p = iet.Permutation('a b c', 'c b a', reduced = True) sage: p.is_irreducible() True :: sage: q = iet.Permutation('a b c d', 'b a d c', reduced = True) sage: q.is_irreducible() False Rauzy movability and Rauzy move:: sage: p = iet.Permutation('a b c', 'c b a', reduced = True) sage: p.has_rauzy_move(1) True sage: p.rauzy_move(1) a b c b c a Rauzy diagrams:: sage: p = iet.Permutation('a b c d', 'd a b c') sage: p_red = iet.Permutation('a b c d', 'd a b c', reduced = True) sage: d = p.rauzy_diagram() sage: d_red = p_red.rauzy_diagram() sage: p.rauzy_move(0) in d True sage: d.cardinality() 12 sage: d_red.cardinality() 6 """
[docs] def list(self): r""" Returns a list of two list that represents the permutation. EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.GeneralizedPermutation('a b','b a',reduced=True) sage: p.list() == [['a', 'b'], ['b', 'a']] True sage: p = iet.GeneralizedPermutation('a a','b b',reduced=True) sage: p.list() == [['a', 'a'], ['b', 'b']] True """ return [ list(map(lambda x: self._alphabet.unrank(x), range(len(self._twin[0])))), list(map(lambda x: self._alphabet.unrank(x), self._twin[1]))]
[docs] def rauzy_move_relabel(self, winner, side='right'): r""" Returns the relabelization obtained from this move. EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c d','d c b a') sage: q = p.reduced() sage: p_t = p.rauzy_move('t') sage: q_t = q.rauzy_move('t') sage: s_t = q.rauzy_move_relabel('t') sage: print(s_t) a->a, b->b, c->c, d->d sage: list(map(s_t, p_t[0])) == list(map(Word, q_t[0])) True sage: list(map(s_t, p_t[1])) == list(map(Word, q_t[1])) True sage: p_b = p.rauzy_move('b') sage: q_b = q.rauzy_move('b') sage: s_b = q.rauzy_move_relabel('b') sage: print(s_b) a->a, b->d, c->b, d->c sage: list(map(s_b, q_b[0])) == list(map(Word, p_b[0])) True sage: list(map(s_b, q_b[1])) == list(map(Word, p_b[1])) True """ from surface_dynamics.interval_exchanges.labelled import LabelledPermutationIET from sage.combinat.words.morphism import WordMorphism winner = interval_conversion(winner) side = side_conversion(side) p = LabelledPermutationIET(self.list()) l0_q = p.rauzy_move(winner, side).list()[0] d = dict([(self._alphabet[i],l0_q[i]) for i in range(len(self))]) return WordMorphism(d)
[docs] def rauzy_diagram(self, extended=False, **kwds): r""" Returns a Rauzy diagram associated to this permutation INPUT: - ``extended`` - boolean (default: False) - if True return extended Rauzy diagram OUTPUT: A Rauzy diagram EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c d', 'd a b c',reduced=True) sage: d = p.rauzy_diagram() sage: p.rauzy_move(0) in d True sage: p.rauzy_move(1) in d True For more information, try help RauzyDiagram """ options = kwds if extended: options['symmetric'] = True return ReducedRauzyDiagram(self,**options)
[docs] def rauzy_class_cardinality(self, extended=False): r""" Cardinality of Rauzy diagram As proved in [Del13]_, there exists a closed formula for the cardinality of Rauzy diagrams. This function uses the formula without any explicit computation of the rauzy class. INPUT: - ``extended`` - boolean (default: False) - return cardinality for extended Rauzy diagrams EXAMPLES:: sage: from surface_dynamics import * Examples for permutations such that the suspensions are tori:: sage: p=iet.Permutation('a b','b a',reduced=True) sage: p.stratum() H_1(0) sage: p.rauzy_diagram() Rauzy diagram with 1 permutation sage: p.rauzy_class_cardinality() 1 sage: p = iet.Permutation('a 1 b','b 1 a',reduced=True) sage: p.stratum() H_1(0^2) sage: p.rauzy_diagram() Rauzy diagram with 3 permutations sage: p.rauzy_class_cardinality() 3 sage: p = iet.Permutation('a 1 2 b','b 1 2 a',reduced=True) sage: p.stratum() H_1(0^3) sage: p.rauzy_diagram() Rauzy diagram with 6 permutations sage: p.rauzy_class_cardinality() 6 sage: p = iet.Permutation('a 1 2 3 b','b 1 2 3 a',reduced=True) sage: p.rauzy_class_cardinality() 10 sage: p = iet.Permutation('a 1 2 3 4 b','b 1 2 3 4 a',reduced=True) sage: p.rauzy_class_cardinality() 15 You should have recognize the sequence 1, 3, 6, 10, 15... which is the sequence with general term the binomial ``n(n+1)/2``. An example of extended Rauzy diagram which is different from Rauzy diagram:: sage: p = iet.Permutation('a b c d e f g','g c b f e d a',reduced=True) sage: p.marked_profile() 2o4 [4, 2] sage: pp = p.left_right_inverse() sage: pp.marked_profile() 4o2 [4, 2] sage: p.rauzy_class_cardinality() 261 sage: pp.rauzy_class_cardinality() 509 sage: p.rauzy_class_cardinality(extended=True) 770 sage: 261 + 509 == 770 True And one can check that this the algorithm for cardinality is True:: sage: p.rauzy_diagram() Rauzy diagram with 261 permutations sage: pp.rauzy_diagram() Rauzy diagram with 509 permutations sage: p.rauzy_diagram(extended=True) Rauzy diagram with 770 permutations And we end by an example of Rauzy diagram associated to an hyperelliptic component:: sage: p = iet.Permutation('a b c d e 0 f','f e d c b 0 a',reduced=True) sage: p.rauzy_diagram() Rauzy diagram with 37 permutations sage: p.rauzy_class_cardinality() 37 sage: p.rauzy_diagram(extended=True) Rauzy diagram with 254 permutations sage: p.rauzy_class_cardinality(extended=True) 254 """ from .rauzy_class_cardinality import gamma_irr,delta_irr from sage.arith.all import binomial s = self.stratum() mp = self.marked_profile() p = mp.partition() if extended: return self.stratum_component().rauzy_class_cardinality() if s.is_connected(): # easy stuff return gamma_irr(p,mp.left()) cc = self.stratum_component() zeros = [d for d in s.signature() if d] g = s.surface_genus() if zeros == [2*g-2] or zeros == [g-1,g-1]: # hyp component + others if cc.spin() == s.hyperelliptic_component().spin(): d = len(self) # number of intervals of self if g == 1: # genus 1 is particular nb_hyp = binomial(d,2) else: k = s.signature().count(0) d -= k if extended: nb_hyp = binomial(d+k,k) * (2*d-1) + binomial(d+k-1,k-1) * d elif mp.left() == 1: nb_hyp = binomial(d+k,k-1) * (2**(d-1)-1+d) elif mp.left() == d-1: nb_hyp = binomial(d+k,k) * (2**(d-1)-1) else: raise ValueError("this should not happen") if cc == s.hyperelliptic_component(): # hyp return nb_hyp if s.number_of_components() == 2: # other is alone N = gamma_irr(p,mp.left()) else: # others are odd and even t = (-1)**(1-cc.spin()) N = (gamma_irr(p,mp.left()) + t * delta_irr(p,mp.left())) // 2 return N - nb_hyp else: # cc.spin() != s.hyperelliptic_component().spin() t = (-1)**(1-cc.spin()) return (gamma_irr(p,mp.left()) + t * delta_irr(p,mp.left())) // 2 else: # odd and even components t = (-1)**(1-cc.spin()) # 1 if odd and -1 if even return (gamma_irr(p,mp.left()) + t * delta_irr(p,mp.left())) // 2
[docs] class ReducedPermutationLI(ReducedPermutation, OrientablePermutationLI): r""" Reduced quadratic (or generalized) permutation. EXAMPLES:: sage: from surface_dynamics import * Reducibility testing:: sage: p = iet.GeneralizedPermutation('a b b', 'c c a', reduced = True) sage: p.is_irreducible() True :: sage: p = iet.GeneralizedPermutation('a b c a', 'b d d c', reduced = True) sage: p.is_irreducible() False sage: test, decomposition = p.is_irreducible(return_decomposition = True) sage: test False sage: decomposition (['a'], ['c', 'a'], [], ['c']) Rauzy movavability and Rauzy move:: sage: p = iet.GeneralizedPermutation('a b b', 'c c a', reduced = True) sage: p.has_rauzy_move(0) True sage: p.rauzy_move(0) a a b b c c sage: p.rauzy_move(0).has_rauzy_move(0) False sage: p.rauzy_move(1) a b b c c a Rauzy diagrams:: sage: p_red = iet.GeneralizedPermutation('a b b', 'c c a', reduced = True) sage: d_red = p_red.rauzy_diagram() sage: d_red.cardinality() 4 """
[docs] def list(self): r""" The permutations as a list of two lists. EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.GeneralizedPermutation('a b b', 'c c a', reduced = True) sage: list(p) [['a', 'b', 'b'], ['c', 'c', 'a']] """ i_a = 0 l = [[False]*len(self._twin[0]),[False]*len(self._twin[1])] # False means empty here for i in range(2): for j in range(len(l[i])): if l[i][j] is False: l[i][j] = self._alphabet[i_a] l[self._twin[i][j][0]][self._twin[i][j][1]] = self._alphabet[i_a] i_a += 1 return l
[docs] def rauzy_diagram(self, **kargs): r""" Returns the associated Rauzy diagram. The Rauzy diagram of a permutation corresponds to all permutations that we could obtain from this one by Rauzy move. The set obtained is a labelled Graph. The label of vertices being 0 or 1 depending on the type. OUTPUT: Rauzy diagram -- the graph of permutations obtained by rauzy induction EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c d', 'd a b c') sage: d = p.rauzy_diagram() """ return ReducedRauzyDiagram(self, **kargs)
[docs] def labelize_flip(couple): r""" Returns a string from a 2-uple couple of the form (name, flip). TESTS:: sage: from surface_dynamics.interval_exchanges.reduced import labelize_flip sage: labelize_flip((4,1)) ' 4' sage: labelize_flip(('a',-1)) '-a' """ if couple[1] == -1: return '-' + str(couple[0]) return ' ' + str(couple[0])
FlippedReducedPermutation = ReducedPermutation
[docs] class FlippedReducedPermutationIET( FlippedReducedPermutation, FlippedPermutationIET): r""" Flipped Reduced Permutation from iet EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c', 'c b a', flips=['a'], reduced=True) sage: p.rauzy_move(1) -a -b c -a c -b TESTS:: sage: p = iet.Permutation('a b','b a',flips=['a']) sage: p == loads(dumps(p)) True sage: p = iet.Permutation('a b c', 'c a b', flips=['b'], reduced=True) sage: for q in sorted(p.rauzy_diagram()): ....: print('%s\n********' % q) -a b -c b -a -c ******** a -b -c -b a -c ******** a -b c c a -b ******** a b -c b -c a ******** a -b c c -b a ******** """
[docs] def list(self, flips=False): r""" Returns a list representation of self. INPUT: - ``flips`` - boolean (default: False) if True the output contains 2-uple of (label, flip) EXAMPLES:: sage: from surface_dynamics import iet sage: p = iet.Permutation('a b','b a',reduced=True,flips='b') sage: p.list(flips=True) [[('a', 1), ('b', -1)], [('b', -1), ('a', 1)]] sage: p.list(flips=False) [['a', 'b'], ['b', 'a']] sage: p.alphabet([0,1]) sage: p.list(flips=True) [[(0, 1), (1, -1)], [(1, -1), (0, 1)]] sage: p.list(flips=False) [[0, 1], [1, 0]] One can recover the initial permutation from this list:: sage: p = iet.Permutation('a b','b a',reduced=True,flips='a') sage: iet.Permutation(p.list(), flips=p.flips(), reduced=True) == p True """ if flips: a0 = list(zip(map(self.alphabet().unrank, range(0,len(self))), self._flips[0])) a1 = list(zip(map(self.alphabet().unrank, self._twin[1]), self._flips[1])) else: a0 = list(map(self.alphabet().unrank, range(0,len(self)))) a1 = list(map(self.alphabet().unrank, self._twin[1])) return [a0,a1]
[docs] def rauzy_diagram(self, **kargs): r""" Returns the associated Rauzy diagram. EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b','b a',reduced=True,flips='a') sage: r = p.rauzy_diagram() sage: p in r True """ return FlippedReducedRauzyDiagram(self, **kargs)
[docs] class FlippedReducedPermutationLI( FlippedReducedPermutation, FlippedPermutationLI): r""" Flipped Reduced Permutation from li EXAMPLES: sage: from surface_dynamics import * Creation using the GeneralizedPermutation function:: sage: p = iet.GeneralizedPermutation('a a b', 'b c c', reduced=True, flips='a') """
[docs] def list(self, flips=False): r""" Returns a list representation of self. INPUT: - ``flips`` - boolean (default: False) return the list with flips EXAMPLES: sage: from surface_dynamics import * :: sage: p = iet.GeneralizedPermutation('a a','b b',reduced=True,flips='a') sage: p.list(flips=True) [[('a', -1), ('a', -1)], [('b', 1), ('b', 1)]] sage: p.list(flips=False) [['a', 'a'], ['b', 'b']] sage: p = iet.GeneralizedPermutation('a a b','b c c',reduced=True,flips='abc') sage: p.list(flips=True) [[('a', -1), ('a', -1), ('b', -1)], [('b', -1), ('c', -1), ('c', -1)]] sage: p.list(flips=False) [['a', 'a', 'b'], ['b', 'c', 'c']] One can rebuild the permutation from the list:: sage: p = iet.GeneralizedPermutation('a a b','b c c',flips='a',reduced=True) sage: iet.GeneralizedPermutation(p.list(),flips=p.flips(),reduced=True) == p True """ i_a = 0 l = [[False]*len(self._twin[0]),[False]*len(self._twin[1])] if flips: for i in range(2): # False means empty here for j in range(len(l[i])): if l[i][j] is False: l[i][j] = (self._alphabet.unrank(i_a), self._flips[i][j]) l[self._twin[i][j][0]][self._twin[i][j][1]] = l[i][j] i_a += 1 else: for i in range(2): # False means empty here for j in range(len(l[i])): if l[i][j] is False: l[i][j] = self._alphabet.unrank(i_a) l[self._twin[i][j][0]][self._twin[i][j][1]] = l[i][j] i_a += 1 return l
[docs] def rauzy_diagram(self, **kargs): r""" Returns the associated Rauzy diagram. For more explanation and a list of arguments try help(iet.RauzyDiagram) EXAMPLES:: sage: from surface_dynamics import * sage: p = iet.GeneralizedPermutation('a a b','c c b',reduced=True) sage: r = p.rauzy_diagram() sage: p in r True """ return FlippedReducedRauzyDiagram(self, **kargs)
[docs] class ReducedRauzyDiagram(RauzyDiagram): r""" Rauzy diagram of reduced permutations """ def _permutation_to_vertex(self, p): r""" The necessary data to store the permutation. TESTS:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c','c b a',reduced=True) #indirect doctest sage: r = p.rauzy_diagram() sage: p in r True """ return (tuple(p._twin[0]), tuple(p._twin[1])) def _set_element(self, data=None): r""" Sets self._element with data. TESTS:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c','c b a',reduced=True) sage: r = p.rauzy_diagram() sage: p in r #indirect doctest True """ self._element._twin = [list(data[0]), list(data[1])]
[docs] class FlippedReducedRauzyDiagram(FlippedRauzyDiagram, ReducedRauzyDiagram): r""" Rauzy diagram of flipped reduced permutations. TESTS:: sage: from surface_dynamics import * sage: p = iet.Permutation('a b c', 'c a b', flips=['b'], reduced=True) sage: r = p.rauzy_diagram() sage: r Rauzy diagram with 5 permutations sage: p in r True sage: p.rauzy_move('t','r') in r True sage: p.rauzy_move('b','r') in r True sage: p = iet.GeneralizedPermutation('a b b','c c a',flips='a',reduced=True) sage: r = p.rauzy_diagram() Traceback (most recent call last): ... NotImplementedError: irreducibility test not implemented for generalized permutations with flips """ def _permutation_to_vertex(self, p): return (tuple(p._twin[0]), tuple(p._twin[1]), tuple(p._flips[0]), tuple(p._flips[1])) def _set_element(self, data=None): self._element._twin = [list(data[0]), list(data[1])] self._element._flips = [list(data[2]), list(data[3])]