Source code for surface_dynamics.flat_surfaces.separatrix_diagram

# encoding=utf-8
r"""
Separatrix diagrams and cylinder diagrams

A separatrix diagram is a couple of permutation ``(bot,top)`` that have the same
number of cycles in their cycle decompositions. A cylinder diagram is a
separatrix diagram together with a bijection between the cycles of ``bot`` and
``top``.

A cylinder diagram encodes the combinatorics of cylinder decomposition of a
completely periodic direction in a translation surface. If we adjoin coordinates
to this combinatorial datum, we have a complete description of the underlying
surface. In the case of arithmetic curves, the coordinates can be taken to be
rational numbers.

This representation of a surface is used in various constructions:

- square tiled surfaces

- Thurston-Veech construction of pseudo-Anosov diffeomorphism

- description of the cusp of Teichmueller curves

.. TODO::

    - We need a more general structure to encode configurations of structure of
      saddle connections (which need not be completely periodic directions (see
      [EskMasZor03]_)

    - Gray code for conjugacy classes of permutation in order to optimize the
      generation of separatrix and cylinder diagrams.

    - Implement separatrix diagram as a list of ribbon graphs with a pairing
      of its faces. In the Abelian case, the maps are endowed with bicoloration
      of the faces and the pairing is a pair of faces with different colors.
      (alternative for quadratic case: orientable + involution)

    - enumerators for fat graphs of genus g with prescribed vertex degrees
      (possibly up to isomorphism)

    - enumerators for fat graphs of genus g with prescribed vertex degrees
      (possibly up to isomorphism)

EXAMPLES::

    sage: from surface_dynamics import *

Separatrix diagrams::

    sage: s = SeparatrixDiagram('(0,1,2)(3,4)(5,6,7)','(0,4,1,2)(3,7)(5,6)')
    sage: s
    (0,1,2)(3,4)(5,6,7)-(0,4,1,2)(3,7)(5,6)
    sage: s.bot_cycle_tuples()
    [(0, 1, 2), (3, 4), (5, 6, 7)]
    sage: s.top_cycle_tuples()
    [(0, 4, 1, 2), (3, 7), (5, 6)]

Cylinder diagrams::

    sage: c = CylinderDiagram([((0,),(4,)),((1,2),(0,1,3)),((3,4),(2,))])
    sage: print(c)
    (0)-(4) (1,2)-(0,1,3) (3,4)-(2)
    sage: print(c.separatrix_diagram())
    (0)(1,2)(3,4)-(0,1,3)(2)(4)

They can also be built from separatrix diagram::

    sage: s = SeparatrixDiagram('(0,1,2)(3,4)(5,6,7)','(0,4,1,2)(3,7)(5,6)')
    sage: s
    (0,1,2)(3,4)(5,6,7)-(0,4,1,2)(3,7)(5,6)
    sage: s.to_cylinder_diagram([(0,1),(1,0),(2,2)])
    (0,1,2)-(3,7) (3,4)-(0,4,1,2) (5,6,7)-(5,6)
"""
#*****************************************************************************
#       Copyright (C) 2010-2019 Vincent Delecroix <20100.delecroix@gmail.com>
#
#  Distributed under the terms of the GNU General Public License (GPL)
#  as published by the Free Software Foundation; either version 2 of
#  the License, or (at your option) any later version.
#                  https://www.gnu.org/licenses/
#*****************************************************************************

from __future__ import print_function, absolute_import
from six.moves import range, map, filter, zip
from six import iteritems

from functools import total_ordering

import collections
import numbers

from sage.structure.sage_object import SageObject

import itertools
import sage.arith.misc as arith
from sage.rings.integer import Integer

from sage.graphs.digraph import DiGraph

from surface_dynamics.misc.permutation import (perm_check, equalize_perms, perm_init,
        perm_cycles, perm_cycle_type, perm_compose_i,
        perm_invert, perms_canonical_labels,
        perms_transitive_components, canonical_perm, canonical_perm_i,
        argmin)
from surface_dynamics.misc.linalg import cone_triangulate

from sage.misc.decorators import rename_keyword

#
# Abelian and quadratic Separatrix Diagram
#
[docs] def two_non_connected_perms_canonical_labels(bot, top): r""" EXAMPLES:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import two_non_connected_perms_canonical_labels sage: two_non_connected_perms_canonical_labels([3,2,1,0],[0,1,2,3]) ([1, 0, 3, 2], [0, 1, 2, 3]) """ n = len(bot) cs_type_nb = {} # (bot,top) -> nb of them c_inv = [None] * n for c in perms_transitive_components([bot,top]): for i,j in enumerate(c): c_inv[j] = i cbot = [None]*len(c) ctop = [None]*len(c) for i in c: cbot[c_inv[i]] = c_inv[bot[i]] ctop[c_inv[i]] = c_inv[top[i]] (cbot,ctop), _ = perms_canonical_labels([cbot,ctop]) bt = (tuple(cbot),tuple(ctop)) if bt in cs_type_nb: cs_type_nb[bt] += 1 else: cs_type_nb[bt] = 1 shift = 0 bot = [] top = [] keys = sorted(cs_type_nb.keys()) for key in keys: for _ in range(cs_type_nb[key]): bot.extend(shift+i for i in key[0]) top.extend(shift+i for i in key[1]) shift += len(key[0]) return bot,top
# main class
[docs] @total_ordering class SeparatrixDiagram(SageObject): r""" Separatrix diagram of oriented foliation. A separatrix diagram is a 2-tuple of permutations ``(bot,top)`` such that ``bot`` and ``top`` share the same number of cycles. bot (resp. top) has to be thought a bottom (resp. top) of a potential face as in the following:: -- bot --> ------------------- <-- top -- The order for bot and top is chosen in such a way that it corresponds to the orientation of a face. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,2)(1,3,4)','(0,4)(2,1,3)') sage: print(s) (0,2)(1,3,4)-(0,4)(1,3,2) sage: print(s.stratum()) H_3(4) """ def __init__(self, data, top=None, check=True, copy=True): r""" TESTS:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)(2,3,4)','(0,2,4)(1,3)') sage: s == loads(dumps(s)) True sage: SeparatrixDiagram(s) (0,1)(2,3,4)-(0,2,4)(1,3) sage: s == SeparatrixDiagram(s) True sage: SeparatrixDiagram(str(s)) (0,1)(2,3,4)-(0,2,4)(1,3) sage: s == SeparatrixDiagram(str(s)) True """ if copy: if top is None: if isinstance(data,SeparatrixDiagram): bot = data.bot() top = data.top() elif isinstance(data,(list,tuple)) and len(data) == 2: bot,top = data elif isinstance(data,str): bot,top = data.split('-') else: raise ValueError("the argument data is not valid") else: bot = data bot = perm_init(bot) top = perm_init(top) equalize_perms([bot, top]) else: bot = data self._bot = bot self._top = top n = len(bot) bot_seen = [True] * n top_seen = [True] * n bot_to_cycle = [None]*n top_to_cycle = [None]*n bot_cycles = [] top_cycles = [] for i in range(n): if bot_seen[i]: c=[] k = len(bot_cycles) while bot_seen[i]: bot_to_cycle[i] = k bot_seen[i] = False c.append(i) i = self._bot[i] bot_cycles.append(tuple(c)) k += 1 if top_seen[i]: c=[] k = len(top_cycles) while top_seen[i]: top_to_cycle[i] = k top_seen[i] = False c.append(i) i = self._top[i] top_cycles.append(tuple(c)) k += 1 self._bot_cycles = bot_cycles self._top_cycles = top_cycles self._bot_to_cycle = bot_to_cycle self._top_to_cycle = top_to_cycle if check: self._check() def _check(self): r""" Check that the data of self is valid, i.e. * self._bot, self._top are valid permutations * the number of cycles of bot and top are the same EXAMPLES:: sage: from surface_dynamics import * sage: c = SeparatrixDiagram('(0,1)(2,3)','(0,2,3,1)') #indirect doctest Traceback (most recent call last): ... ValueError: bot has 2 cylinders whereas top has 1 """ perm_check(self._bot) perm_check(self._top) p_bot = self.bot_cycle_tuples() p_top = self.top_cycle_tuples() if len(p_top) != len(p_bot): raise ValueError("bot has %d cylinders whereas top has %d"%(len(p_bot),len(p_top))) def _sage_input_(self, sib, coerced): r""" Sage input support. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,3,2)(1,4)','(0,1)(2,3,4)') sage: sage_input(s) SeparatrixDiagram('(0,3,2)(1,4)-(0,1)(2,3,4)') We can check that evaluating the code actually gives back the same object:: sage: t = eval(str(sage_input(s))) sage: t == s True """ return sib.name('SeparatrixDiagram')(str(self))
[docs] def to_directed_graph(self): r""" Return a graph that encodes this separatrix diagram. The vertices correspond to separatrix and the edges are of two types - 'b' neighbor corresponds to the right neighbors on the bottom permutation - 't' edges correspond to the neighbor of the top permutation EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,1)(2,3,4)','(0,3,2)(1,4)') sage: G = S.to_directed_graph(); G Looped multi-digraph on 5 vertices sage: G.vertices(sort=True) [0, 1, 2, 3, 4] sage: G.edges(sort=True) [(0, 1, 'b'), (0, 3, 't'), (1, 0, 'b'), (1, 4, 't'), (2, 0, 't'), (2, 3, 'b'), (3, 2, 't'), (3, 4, 'b'), (4, 1, 't'), (4, 2, 'b')] """ G = DiGraph(multiedges=True, loops=True) G.add_edges((i, self._top[i], 't') for i in range(self.nseps())) G.add_edges((i, self._bot[i], 'b') for i in range(self.nseps())) return G
def _repr_(self): r""" String representation of self EXAMPLES:: sage: from surface_dynamics import * sage: d = SeparatrixDiagram('(0,1)(2)','(0)(1,2)') sage: repr(d) #indirect doctest '(0,1)(2)-(0)(1,2)' """ return self.bot_cycle_string() + "-" + self.top_cycle_string() #TODO def _latex_(self): r""" Latex representation EXAMPLES:: sage: from surface_dynamics import * sage: print("to be done") to be done """ n = self._n if len(self.vertices_out().cycle_type()) == 1: v = self.vertices()[0] m = 360. / (2*n) d = dict([i,(v.index(i),v.index(-i))] for i in range(1,self._n+1)) s = "\\begin{tikzpicture}\n" for i,(vout,vin) in iteritems(d): s += " \\draw [-triangle 45] (0,0) -- (%f:0.8cm);\n" %(vout*m) s += " \\draw (%f:0.8cm) -- (%f:1cm);\n" %(vout*m,vout*m) s += " \\draw (%f:1cm) \n" %(vout*m) v1 = Integer(vout+vin)/2 if vout+vin > 2*n: v2 = v1 - n else: v2 = v1 + n d1 = min([abs(vout-v1), abs(vout-v1-2*n), abs(vout-v1+2*n)]) d2 = min([abs(vout-v2), abs(vout-v2-2*n), abs(vout-v2+2*n)]) if d1 < d2: vint = v1 d = d1 else: vint = v2 d = d2 dint = '%fcm' %(1.5+d/2.) ct1 = '%fcm' %(d/2.) if cyclic_direction(vout,vint,vin) == 1: ct2 = '%fcm' %(-d/2.) ct3 = '%fcm' %(d/2.) else: ct2 = '%fcm' %(d/2.) ct3 = '%fcm' %(-d/2.) s += " ..controls +(%f:%s) and +(%f:%s) ..\n" %(vout*m,ct1,(vint+n/2.)*m,ct2) s += " (%f:%s)\n" %(vint*m,dint) s += " ..controls +(%f:%s) and +(%f:%s) ..\n" %((vint+n/2.)*m,ct3,vin*m,ct1) s += " (%f:1cm);\n" %(vin*m) s += " \\draw [-open triangle 45] (%f:1cm) -- (%f:0.6cm);\n" %(vin*m,vin*m) s += " \\draw (%f:0.6cm) -- (0,0);\n" %(vin*m) s += "\\end{tikzpicture}" return s else: return "" # # Comparisons and canonic labels # def __eq__(self, other): r""" Equality test TESTS:: sage: from surface_dynamics import * sage: d1 = SeparatrixDiagram('(0)','(0)') sage: d2 = SeparatrixDiagram('(0,1)(2)','(0,1)(2)') sage: d3 = SeparatrixDiagram('(0,1)(2)','(0,2)(1)') sage: d1 == d1 and d2 == d2 and d3 == d3 True sage: d1 == d2 or d1 == d3 or d2 == d3 or d3 == d2 False sage: d1 = SeparatrixDiagram('(0)','(0)') sage: d2 = SeparatrixDiagram('(0,1)(2)','(0,1)(2)') sage: d3 = SeparatrixDiagram('(0,1)(2)','(0,2)(1)') sage: d1 != d1 or d2 != d2 or d3 != d3 False sage: d1 != d2 and d1 != d3 and d2 != d3 and d3 != d2 True """ if type(self) != type(other): raise TypeError return self._bot == other._bot and self._top == other._top def __ne__(self, other): if type(self) is not type(other): raise TypeError return not (self == other) def __lt__(self, other): r""" Test whether self is lesser or equal than other TESTS:: sage: from surface_dynamics import * sage: s = ['(0,1,2)-(0,1,2)', ....: '(0,2,1)-(0,1,2)', ....: '(0,2,1)-(0,2,1)', ....: '(0)(1,2)-(0)(1,2)', ....: '(0)(1,2)-(0,1)(2)', ....: '(0)(1,2)-(0,2)(1)', ....: '(0,1)(2)-(0)(1,2)', ....: '(0,1)(2)-(0,1)(2)', ....: '(0,1)(2)-(0,2)(1)', ....: '(0,2)(1)-(0)(1,2)', ....: '(0,2)(1)-(0,1)(2)', ....: '(0,2)(1)-(0,2)(1)', ....: '(0)(1)(2)-(0)(1)(2)'] sage: s0 = list(map(SeparatrixDiagram, s)) sage: s1 = s0[:] sage: for _ in range(10): ....: shuffle(s1) ....: assert sorted(s1) == s0 """ if type(self) != type(other): raise TypeError("only separatrix diagram can be compared to separatrix diagrams") if self.nseps() < other.nseps(): return True elif self.nseps() > other.nseps(): return False if self.ncyls() < other.ncyls(): return True elif self.ncyls() > other.ncyls(): return False if self._bot_cycles < other._bot_cycles: return True elif self._bot_cycles > other._bot_cycles: return False if self._top_cycles < other._top_cycles: return True elif self._top_cycles > other._top_cycles: return False # equal return False
[docs] def is_isomorphic(self, other, return_map=False): r""" Test whether this separatrix diagram is isomorphic to ``other``. EXAMPLES:: sage: from surface_dynamics import * sage: bot = [1,2,0,3] sage: top = [1,0,3,2] sage: s = SeparatrixDiagram(bot,top); s (0,1,2)(3)-(0,1)(2,3) sage: m = [3,0,1,2] sage: bot2 = [0]*4 sage: top2 = [0]*4 sage: for i in range(4): ....: bot2[m[i]] = m[bot[i]] ....: top2[m[i]] = m[top[i]] sage: ss = SeparatrixDiagram(bot2,top2) sage: s.is_isomorphic(ss) True sage: m = [1,2,0,3] sage: for i in range(4): ....: bot2[m[i]] = m[bot[i]] ....: top2[m[i]] = m[top[i]] sage: ss = SeparatrixDiagram(bot2,top2) sage: s.is_isomorphic(ss) True """ if type(self) is not type(other): raise TypeError("other must be a separatrix diagram") if return_map: raise NotImplementedError return self._get_normal_perms() == other._get_normal_perms()
[docs] def relabel(self, perm, inplace=False): r""" Relabel self according to the permutation ``perm``. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0)(2,3,4)','(0,3,2)(1)') sage: s (0)(1)(2,3,4)-(0,3,2)(1)(4) sage: s.relabel(perm=[1,0,2,3,4]) (0)(1)(2,3,4)-(0)(1,3,2)(4) sage: s.relabel(perm=[1,2,0,3,4]) (0,3,4)(1)(2)-(0,1,3)(2)(4) """ n = self.degree() perm.extend(range(len(perm),n)) bot = [None] * self.degree() top = [None] * self.degree() for i in range(n): bot[perm[i]] = perm[self._bot[i]] top[perm[i]] = perm[self._top[i]] S = SeparatrixDiagram(bot,top) if inplace: self._bot = S._bot self._top = S._top self._bot_cycles = S._bot_cycles self._top_cycles = S._top_cycles self._bot_to_cycle = S._bot_to_cycle self._top_to_cycle = S._top_to_cycle return S
[docs] def canonical_label(self, inplace=False): r""" Relabel self according to some canonical labels. The result is cached. INPUT: - ``inplace`` - boolean (default: ``True``) - if True modify self if not return a new separatrix diagram. EXAMPLES:: sage: from surface_dynamics import * sage: bot = '(0,1,3,6,7,5)(2,4)(8)(9)' sage: top = '(0)(1,2)(3,4,5)(6,7,8,9)' sage: s = SeparatrixDiagram(bot,top) sage: s.canonical_label() (0)(1)(2,3,4,5,6,7)(8,9)-(0,1,2,3)(4,7,9)(5)(6,8) TESTS:: sage: from surface_dynamics import * sage: bot = [3,2,4,0,1] sage: top = [1,0,3,4,2] sage: b = [None]*5; t = [None]*5 sage: for p in Permutations([0,1,2,3,4]): ....: for i in range(5): ....: b[p[i]] = p[bot[i]] ....: t[p[i]] = p[top[i]] ....: s = SeparatrixDiagram(b,t) ....: print(s.canonical_label()) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) ... (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) (0,1)(2,3,4)-(0,2,4)(1,3) """ try: sep = self._normal_form except AttributeError: bot, top = self._get_normal_perms() self._normal_form = SeparatrixDiagram(bot, top, check=False, copy=False) self._normal_form._normal_form = self._normal_form sep = self._normal_form if inplace: other = self._normal_form self._bot = other._bot self._top = other._top self._bot_cycles = other._bot_cycles self._top_cycles = other._top_cycles self._bot_to_cycle = other._bot_to_cycle self._top_to_cycle = other._top_to_cycle return return sep
[docs] def horizontal_symmetry(self): r""" Return the horizontal symmetric of this separatrix diagram. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,2,3)(4,5)','(1,2,3)(4,5,0)') sage: sh = s.horizontal_symmetry() sage: print(sh) (0,5,4)(1,3,2)-(0,3,2,1)(4,5) sage: c = s.cylinder_diagrams(up_to_symmetry=False)[0].horizontal_symmetry() sage: ch = sh.cylinder_diagrams(up_to_symmetry=False)[0] sage: c.is_isomorphic(ch) True """ return SeparatrixDiagram(tuple(t[::-1] for t in self._top_cycles), tuple(b[::-1] for b in self._bot_cycles))
[docs] def vertical_symmetry(self): r""" Return the vertical symmetric of this separatrix diagram. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,2,3)(4,5)','(1,2,3)(4,5,0)') sage: sv = s.vertical_symmetry() sage: print(sv) (0,3,2,1)(4,5)-(0,5,4)(1,3,2) sage: c = sv.cylinder_diagrams(up_to_symmetry=False)[0].vertical_symmetry() sage: cv = sv.cylinder_diagrams(up_to_symmetry=False)[0] sage: c.is_isomorphic(cv) True """ return SeparatrixDiagram(tuple(b[::-1] for b in self._bot_cycles), tuple(t[::-1] for t in self._top_cycles))
[docs] def inverse(self): r""" Return the inverse of this separatrix diagram, that is the one we obtain after application of `-Id`. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,2)(3,4,5,6,7,8)-(0,1,3,5,7)(2,4,6,8)') sage: s.inverse() (0,1,3,5,7)(2,4,6,8)-(0,1,2)(3,4,5,6,7,8) sage: s.horizontal_symmetry().vertical_symmetry() == s.inverse() True sage: s.vertical_symmetry().horizontal_symmetry() == s.inverse() True """ return SeparatrixDiagram(tuple(self._top_cycles), tuple(self._bot_cycles))
def _get_normal_perms(self): r""" Returns the normal form of the permutations bot top defining self. Note that the result is cached. ALGORITHM: 1) compute the orbit of G = <bot,top> 2) for each of the connected component compute a normal form 3) sort the list of (normal_top, normal_bot) and concatenate them EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,3,2)(1,4)','(0,1)(2,3,4)') sage: s._get_normal_perms() ([1, 0, 3, 4, 2], [2, 3, 4, 1, 0]) sage: s = SeparatrixDiagram('(0,5,2)(1,3,4)(6,7,8)','(0,3,7,8)(1,5)(2,4,6)') sage: s._get_normal_perms() ([1, 2, 0, 4, 5, 3, 7, 8, 6], [1, 3, 5, 6, 8, 7, 0, 2, 4]) (0,5,2)(1,3,4)(6,7,8)-(0,3,7,8)(1,5)(2,4,6) sage: s.canonical_label() #indirect doctest (0,1,2)(3,4,5)(6,7,8)-(0,1,3,6)(2,5,7)(4,8) """ try: return self._normal_bot, self._normal_top except AttributeError: pass self._normal_bot, self._normal_top = two_non_connected_perms_canonical_labels(self._bot, self._top) return self._normal_bot, self._normal_top def _get_sym_perms(self): r""" Return the four symmetric version of self. """ n = len(self._top) bot, top = self._get_normal_perms() # compute the inverses ibot = [None]*n itop = [None]*n for i in range(n): ibot[bot[i]] = i itop[top[i]] = i hbot, htop = two_non_connected_perms_canonical_labels(itop, ibot) vbot, vtop = two_non_connected_perms_canonical_labels(ibot, itop) sbot, stop = two_non_connected_perms_canonical_labels(top, bot) return (bot,top),(hbot,htop),(vbot,vtop),(sbot,stop)
[docs] def symmetries(self): r""" Return a triple of boolean ``(horiz_sym, vert_sym, inverse_sym)`` which correspond to the symmetry of ``self``. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,2)(3,4,5)-(0,1)(2,3,4,5)') sage: s.symmetries() (False, True, False) sage: s.horizontal_symmetry().is_isomorphic(s) False sage: s.vertical_symmetry().is_isomorphic(s) True sage: s.inverse().is_isomorphic(s) False sage: s = SeparatrixDiagram('(0,1,3,5)(2,4)-(0,4,1,5)(2,3)') sage: s.symmetries() (True, False, False) sage: s.horizontal_symmetry().is_isomorphic(s) True sage: s.vertical_symmetry().is_isomorphic(s) False sage: s.inverse().is_isomorphic(s) False sage: s = SeparatrixDiagram('(0,1,3,5)(2,4)-(0,3,2,1)(5,4)') sage: s.symmetries() (False, False, True) sage: s.horizontal_symmetry().is_isomorphic(s) False sage: s.vertical_symmetry().is_isomorphic(s) False sage: s.inverse().is_isomorphic(s) True sage: s = SeparatrixDiagram('(0)(1,2,3,4,5)-(0,1,2,5,3)(4)') sage: s.symmetries() (False, False, False) sage: s.horizontal_symmetry().is_isomorphic(s) False sage: s.vertical_symmetry().is_isomorphic(s) False sage: s.inverse().is_isomorphic(s) False TESTS:: sage: sym = lambda s: (s.horizontal_symmetry().is_isomorphic(s), ....: s.vertical_symmetry().is_isomorphic(s), ....: s.inverse().is_isomorphic(s)) sage: from surface_dynamics.flat_surfaces.separatrix_diagram import separatrix_diagram_iterator sage: for s in separatrix_diagram_iterator((2,2,2,2)): ....: assert s.symmetries() == sym(s) sage: for s in separatrix_diagram_iterator((4,2)): ....: assert s.symmetries() == sym(s) """ n = len(self._top) bot, top = self._get_normal_perms() # compute the inverses ibot = [None]*n itop = [None]*n for i in range(n): ibot[bot[i]] = i itop[top[i]] = i # horiz bot1, top1 = two_non_connected_perms_canonical_labels(itop, ibot) horiz_sym = bot == bot1 and top == top1 # vert bot1, top1 = two_non_connected_perms_canonical_labels(ibot, itop) vert_sym = bot == bot1 and top == top1 # inv if horiz_sym and vert_sym: # got the two inverse_sym = True elif horiz_sym^vert_sym: # got exactly one inverse_sym = False else: # none of them bot1, top1 = two_non_connected_perms_canonical_labels(top, bot) inverse_sym = bot == bot1 and top == top1 return (horiz_sym, vert_sym, inverse_sym)
[docs] def is_in_normal_form(self): r""" Test normal form Return True if self is in normal form and False otherwise. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,2)(3,4,5)(6,7,8)','(0,3,7,8)(1,5)(2,4,6)') sage: s.is_in_normal_form() False sage: s.canonical_label().is_in_normal_form() True """ return (self._bot, self._top) == self._get_normal_perms()
# # Attributes access #
[docs] def degree(self): r""" Return the degree (number of separatrices) of this separatrix diagram. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,1)(2,3)','(1,3,2)(0)') sage: S.degree() 4 """ return len(self._top)
nseps = degree num_edges = degree
[docs] def ncyls(self): r""" Return the number of cylinders of this separatrix diagram. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,1)(2,3)','(1,3,2)(0)') sage: S.ncyls() 2 """ return len(self._top_cycles)
[docs] def profile(self): r""" Return the angles around each vertex EXAMPLES:: sage: from surface_dynamics import * sage: a = Stratum([1,1,0], k=1) sage: s = a.separatrix_diagrams()[0] sage: s.profile() [2, 2, 1] """ p = perm_cycle_type(self.outgoing_edges_perm()) from sage.combinat.partition import Partition return Partition(p)
[docs] def euler_characteristic(self): r""" Return the Euler characteristic EXAMPLES:: sage: from surface_dynamics import * sage: SeparatrixDiagram('(0)','(0)').euler_characteristic() 0 sage: CylinderDiagram([((0,),(0,))]).euler_characteristic() 0 sage: CylinderDiagram([((0,1),(0,2)), ((2,),(1,))]).euler_characteristic() -2 """ p = self.profile() return Integer(len(p)-sum(p))
[docs] def genus(self): r""" Return the genus EXAMPLES:: sage: from surface_dynamics import * sage: CylinderDiagram([((0,),(0,))]).genus() 1 sage: CylinderDiagram([((0,1),(0,1))]).genus() 1 sage: CylinderDiagram([((0,1,2),(0,1,2))]).genus() 2 sage: CylinderDiagram([((0,1,2,3),(0,1,2,3))]).genus() 2 sage: CylinderDiagram([((0,1,2,3,4),(0,1,2,3,4))]).genus() 3 """ return Integer(1 - self.euler_characteristic()//2)
[docs] def stratum(self): r""" Return the Abelian stratum this separatrix diagram belongs to. EXAMPLES:: sage: from surface_dynamics import * sage: SeparatrixDiagram('(0)(1)(2)','(0)(1)(2)').stratum() H_1(0^3) sage: SeparatrixDiagram('(0,1)(2)','(0,2)(1)').stratum() H_2(2) """ from .abelian_strata import Stratum return Stratum([i-1 for i in self.profile()], k=1)
[docs] def bot(self): r""" The bot permutation as a list from 0 to nseps-1 Warning: the output list should not be modified EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0)(1,2)','(0,1)(2)') sage: s.bot() [0, 2, 1] """ return list(self._bot)
[docs] def bot_perm(self): r""" Return the bot as a permutation (element of a group) EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0)(1,2)','(0,1)(2)') sage: s.bot_perm() (2,3) """ try: # Trac #28652: Rework the constructor of PermutationGroupElement from sage.groups.perm_gps.constructor import PermutationGroupElement except ImportError: from sage.groups.perm_gps.permgroup_element import PermutationGroupElement return PermutationGroupElement([i+1 for i in self._bot])
[docs] def bot_orbit(self, i): r""" Return the orbit of i under the bot permutation EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)(2,5)(3,4,6)','(0,1,5)(2,3,6)(4)') sage: s.bot_orbit(0) (0, 1) sage: s.bot_orbit(4) (3, 4, 6) """ return self._bot_cycles[self._bot_to_cycle[i]]
[docs] def bot_cycle_tuples(self): r""" Return the cycles of the bottom permutation as a list of tuples. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,2)(3,4)','(0)(1,2,3)') sage: S.bot_cycle_tuples() [(0, 2), (1,), (3, 4)] """ return self._bot_cycles
[docs] def bot_cycle_string(self): r""" Return the cycles of the top permutation as a string. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,2)(3,4)','(0)(1,2,3)') sage: S.bot_cycle_string() '(0,2)(1)(3,4)' """ return ''.join('(' + ','.join(map(str,c)) +')' for c in self.bot_cycle_tuples())
[docs] def top(self): r""" Return the top permutation of self as a list. Warning: the output should not be modified EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,3)(2,4)','(0,4)(1,2,3)') sage: s.top() [4, 2, 3, 1, 0] """ return self._top
[docs] def top_perm(self): r""" Return the top as a permutation EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0)(1,2)','(1)(0,2)') sage: s.top_perm() (1,3) """ try: # Trac #28652: Rework the constructor of PermutationGroupElement from sage.groups.perm_gps.constructor import PermutationGroupElement except ImportError: from sage.groups.perm_gps.permgroup_element import PermutationGroupElement return PermutationGroupElement([i+1 for i in self._top])
[docs] def top_orbit(self,i): r""" Return the orbit of ``i`` under the top permutation. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)(2,5)(3,4,6)','(0,1,5)(2,3,6)(4)') sage: s.top_orbit(0) (0, 1, 5) sage: s.top_orbit(6) (2, 3, 6) """ return self._top_cycles[self._top_to_cycle[i]]
[docs] def top_cycle_tuples(self): r""" Return the cycle of the top permutation as a list of tuples. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,2)(3,4)','(0)(1,2,3)') sage: S.top_cycle_tuples() [(0,), (1, 2, 3), (4,)] """ return self._top_cycles
[docs] def top_cycle_string(self): r""" Return the cycle of the top permutation as a string. EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,2)(3,4)','(0)(1,2,3)') sage: S.top_cycle_string() '(0)(1,2,3)(4)' """ return ''.join('(' + ','.join(map(str,c)) + ')' for c in self.top_cycle_tuples())
[docs] def automorphism_group(self, implementation='graph'): r""" Return the automorphism group of self. That is the centralizer of the permutations top and bottom. INPUT: - ``implementation`` - either graph or gap EXAMPLES:: sage: from surface_dynamics import * sage: S = SeparatrixDiagram('(0,3,1,4,2)','(0,1,2,3,4)') sage: G1 = S.automorphism_group(implementation='graph'); G1 Permutation Group with generators [(0,1,2,3,4)] sage: G2 = S.automorphism_group(implementation='gap'); G2 Subgroup ... sage: G1.is_isomorphic(G2) True """ if implementation == 'graph': return self.to_directed_graph().automorphism_group(edge_labels=True) elif implementation == 'gap': from sage.groups.perm_gps.permgroup import PermutationGroup from sage.groups.perm_gps.permgroup_named import SymmetricGroup return SymmetricGroup(self.nseps()).centralizer(PermutationGroup([self.top_perm(),self.bot_perm()])) else: raise ValueError("implementation should be either 'graph' or 'gap'")
[docs] def homological_dimension_of_cylinders(self): r""" Returns the dimension in the first homology group of the span of waist curves of horizontal cylinders. EXAMPLES:: sage: from surface_dynamics import * Homological dimension in the stratum H(2):: sage: c = CylinderDiagram('(0,1,2)-(0,1,2)') sage: c.stratum() H_2(2) sage: c.homological_dimension_of_cylinders() 1 sage: c = CylinderDiagram('(0,1)-(1,2) (2)-(0)') sage: c.stratum() H_2(2) sage: c.homological_dimension_of_cylinders() 2 Homological dimensions for cylinder diagrams in H(1,1):: sage: c = CylinderDiagram('(0,1,2,3)-(0,1,2,3)') sage: c.stratum() H_2(1^2) sage: c.homological_dimension_of_cylinders() 1 sage: c = CylinderDiagram('(0,1)-(0,2) (2,3)-(1,3)') sage: c.stratum() H_2(1^2) sage: c.homological_dimension_of_cylinders() 2 sage: c = CylinderDiagram('(0,1,2)-(1,2,3) (3)-(0)') sage: c.stratum() H_2(1^2) sage: c.homological_dimension_of_cylinders() 2 sage: c = CylinderDiagram('(0,1)-(2,3) (2)-(0) (3)-(1)') sage: c.stratum() H_2(1^2) sage: c.homological_dimension_of_cylinders() 2 """ return Integer(self.ncyls() - SeparatrixDiagram.to_directed_graph(self).connected_components_number() + 1)
[docs] def homologous_cylinders(self): r""" Return the list of homologous cylinders. OUTPUT: a list of lists. Each sublist is an equivalence class of > 1 homologous cylinders. EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0,7,1,2)-(3,6,4,5) (3,6,4,5)-(0,7,1,2)') sage: c.homologous_cylinders() [[0, 1]] sage: c = CylinderDiagram('(0,1)-(2,3) (2)-(0) (3)-(1)') sage: c.homologous_cylinders() [] sage: c = CylinderDiagram('(0,2,1)-(9) (3,6,4,5)-(7,10,8) (7,9,8)-(3,6,4,5) (10)-(0,2,1)') sage: c.homologous_cylinders() [[0, 3], [1, 2]] """ from .twist_space import TwistSpace return TwistSpace(self).homologous_cylinders()
# # Vertices of the separatrix diagram #
[docs] def outgoing_edges_perm(self): r""" Permutation associated to turning around vertices in trigonometric order. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)','(2,3)') sage: s.outgoing_edges_perm() [1, 0, 3, 2] sage: s = SeparatrixDiagram('(0,5,2)(1,3,4)(6,7,8)','(0,3,7,8)(1,5)(2,4,6)') sage: s.outgoing_edges_perm() [6, 2, 1, 5, 0, 8, 7, 4, 3] sage: c = CylinderDiagram('(0,5,2,1,4,3)-(0,4,2,1,5,3)') sage: c.outgoing_edges_perm() [5, 4, 1, 0, 2, 3] """ return perm_compose_i(self._bot,self._top)
[docs] def incoming_edges_perm(self): r""" Permutation associated to turning around vertices in trigonometric order. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)','(2,3)') sage: s.incoming_edges_perm() [1, 0, 3, 2] sage: s = SeparatrixDiagram('(0,5,2)(1,3,4)(6,7,8)','(0,3,7,8)(1,5)(2,4,6)') sage: s.incoming_edges_perm() [7, 0, 8, 2, 5, 4, 3, 1, 6] sage: c = CylinderDiagram('(0,5,2,1,4,3)-(0,4,2,1,5,3)') sage: c.incoming_edges_perm() [4, 5, 1, 0, 3, 2] """ return perm_compose_i(self._top,self._bot)
[docs] def vertices(self): r""" Return a list of pairs ``(vout, vin)`` where each pair represent a vertex and ``vout``, ``vin`` are respectively the labels of outgoing/incoming separatrices at this vertex. EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: from surface_dynamics.misc.permutation import perm_cycles sage: c = CylinderDiagram('(0,1)-(0,2,6,7,4,5,3,8) (2,7,3,4,8,6,5)-(1)') sage: c.vertices() [([0, 1, 8, 7], [0, 4, 2, 1]), ([2, 4, 5], [3, 6, 5]), ([3, 6], [7, 8])] sage: perm_cycles(c.outgoing_edges_perm()) [[0, 1, 8, 7], [2, 4, 5], [3, 6]] sage: perm_cycles(c.incoming_edges_perm()) [[0, 4, 2, 1], [3, 6, 5], [7, 8]] sage: c = CylinderDiagram('(0,1,3,4,2)-(0,1,5,7,6) (5,6)-(4) (7)-(2,3)') sage: perm_cycles(c.outgoing_edges_perm()) [[0, 3], [1, 6], [2, 4], [5, 7]] sage: perm_cycles(c.incoming_edges_perm()) [[0, 5], [1, 2], [3, 4], [6, 7]] """ top = perm_invert(self._top) bot = perm_invert(self._bot) seen = [False] * self.nseps() res = [] for i in range(self.nseps()): if seen[i]: continue cout = [] cin = [] while seen[i] is False: seen[i] = True cout.append(i) cin.append(bot[i]) i = top[bot[i]] j = argmin(cin) res.append((cout, cin[j:] + cin[:j])) return res
# # to cylinder diagram #
[docs] def to_cylinder_diagram(self, pairing): r""" Return a cylinder diagram with the given pairing The pairing should be a list of 2-tuples of integer. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1,3)(2,4)','(0,2)(1,4,3)'); s (0,1,3)(2,4)-(0,2)(1,4,3) sage: s.to_cylinder_diagram([(0,0),(1,1)]) (0,1,3)-(0,2) (2,4)-(1,4,3) sage: s.to_cylinder_diagram([(1,1),(0,0)]) (0,1,3)-(0,2) (2,4)-(1,4,3) sage: s.to_cylinder_diagram([(0,1),(1,0)]) (0,1,3)-(1,4,3) (2,4)-(0,2) sage: s.to_cylinder_diagram([(1,0),(0,1)]) (0,1,3)-(1,4,3) (2,4)-(0,2) """ from copy import copy other = copy(self) other.__class__ = CylinderDiagram bots = self.bot_cycle_tuples() tops = self.top_cycle_tuples() other._bot_to_cyl = [None]*self.nseps() other._top_to_cyl = [None]*self.nseps() for i in range(len(pairing)): b = bots[pairing[i][0]] t = tops[pairing[i][1]] cyl = (b[0],t[0]) for j in b: other._bot_to_cyl[j] = cyl for j in t: other._top_to_cyl[j] = cyl return other
[docs] @rename_keyword(deprecation=666, up_to_isomorphism='up_to_symmetry') def cylinder_diagram_iterator(self, connected=True, up_to_symmetry=True): r""" Construct all cylinder diagrams from given separatrix diagram (i.e. a pair of permutations). INPUT: - ``connected`` - boolean (default: True) - if true, returns only connected cylinder diagrams. - ``up_to_symmetry`` - boolean (default: True) take care of the horizontal and vertical symmetries. EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)(2,3)(4,5)','(1,2)(3,4)(5,0)') sage: for c in s.cylinder_diagram_iterator(): print(c) # random (0,5)-(0,4) (1,4)-(1,3) (2,3)-(2,5) (0,3)-(0,5) (1,2)-(1,4) (4,5)-(2,3) (0,5)-(3,4) (1,4)-(0,2) (2,3)-(1,5) sage: sum(1 for _ in s.cylinder_diagram_iterator(up_to_symmetry=False)) 6 sage: sum(1 for _ in s.cylinder_diagram_iterator(up_to_symmetry=True)) 3 Here is an example with some symmetry:: sage: s = SeparatrixDiagram('(0)(1)(2,3)(4,5,6)-(0,1)(2,4)(3,5)(6)') sage: s.vertical_symmetry().canonical_label() == s True sage: C1 = [CylinderDiagram('(0,1)-(4) (2,4,3)-(5,6) (5)-(0,2) (6)-(1,3)'), ....: CylinderDiagram('(0,3,1)-(0,6) (2,6)-(4,5) (4)-(1) (5)-(2,3)'), ....: CylinderDiagram('(0,1)-(0,4) (2,3,4)-(5,6) (5)-(2) (6)-(1,3)')] sage: C2 = s.cylinder_diagrams() sage: assert len(C1) == len(C2) sage: for (c1, c2) in zip(C1, C2): assert c1.is_isomorphic(c2) TESTS:: sage: from surface_dynamics import SeparatrixDiagram sage: s = SeparatrixDiagram('(0,3)(1,4,5)(2)','(0)(1,2)(3,4,5)') sage: C2 = s.cylinder_diagram_iterator(up_to_isomorphism=True) doctest:warning ... DeprecationWarning: use the option 'up_to_symmetry' instead of 'up_to_isomorphism' ... """ cbot = self.bot_cycle_tuples() ctop0 = self.top_cycle_tuples() connected = not connected if up_to_symmetry: # NOTE: here we should only consider symmetries of the cylinder diagrams # only when this underlying separatrix diagrams has some. But the # canonical labels of cylinder diagrams and separatrix diagrams are # not compatible!! s = set([]) hsym, vsym, isym = self.symmetries() for ctop in itertools.permutations(ctop0): c = CylinderDiagram(zip(cbot,ctop), check=False) c.canonical_label(inplace=True) if c in s: continue cc = [c] if hsym: c1 = c.horizontal_symmetry() c1.canonical_label(inplace=True) cc.append(c1) if vsym: c1 = c.vertical_symmetry() c1.canonical_label(inplace=True) cc.append(c1) if isym: c1 = c.inverse() c1.canonical_label(inplace=True) cc.append(c1) s.update(cc) if (connected or c.is_connected()) and c.smallest_integer_lengths(): yield min(cc) else: for ctop in itertools.permutations(ctop0): c = CylinderDiagram(zip(cbot,ctop),check=False) if (connected or c.is_connected()) and c.smallest_integer_lengths(): yield c
[docs] @rename_keyword(deprecation=666, up_to_isomorphism='up_to_symmetry') def cylinder_diagrams(self, connected=True, up_to_symmetry=True): r""" Return the list of cylinder diagrams associated to this separatrix diagram. We warn that the cylinder diagram may be renumeroted in the output list (in order to prevent repetitions). If you care about numerotation the option ``up_to_symmetry`` should be set to False. INPUT: - ``connected`` - boolean (default: True) - ``up_to_symmetry`` - boolean (default: True) EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0)(1)(2)','(0)(1)(2)') sage: for c in s.cylinder_diagrams(connected=True): print(c) (0)-(2) (1)-(0) (2)-(1) sage: for c in s.cylinder_diagrams(connected=False): print(c) (0)-(0) (1)-(1) (2)-(2) (0)-(1) (1)-(0) (2)-(2) (0)-(2) (1)-(0) (2)-(1) sage: s = SeparatrixDiagram('(0,1)(2)','(0)(1,2)') sage: C1 = [CylinderDiagram('(0,1)-(0,2) (2)-(1)')] sage: C2 = s.cylinder_diagrams() sage: assert len(C1) == len(C2) sage: for (c1, c2) in zip(C1, C2): assert c1.is_isomorphic(c2) In the example below, there is no isomorphism problem for the cylinder diagram generation as the separatrix diagram admit no automorphism:: sage: s = SeparatrixDiagram('(0,3)(1,4,5)(2)','(0)(1,2)(3,4,5)') sage: s.automorphism_group() Permutation Group with generators [()] sage: C1 = [CylinderDiagram('(0,3,1)-(5) (2,5)-(3,4) (4)-(0,2,1)'), ....: CylinderDiagram('(0,1,2)-(0,1,5) (3,5)-(2,4) (4)-(3)'), ....: CylinderDiagram('(0,2,3)-(2,5) (1,4)-(0,1,3) (5)-(4)')] sage: C2 = s.cylinder_diagrams() sage: C3 = s.cylinder_diagrams(up_to_symmetry=False) sage: assert len(C1) == len(C2) == len(C3) sage: for (c1, c2, c3) in zip(C1, C2, C3): assert c1.is_isomorphic(c2) and c1.is_isomorphic(c3) TESTS:: sage: from surface_dynamics import SeparatrixDiagram sage: s = SeparatrixDiagram('(0,3)(1,4,5)(2)','(0)(1,2)(3,4,5)') sage: C2 = s.cylinder_diagrams(up_to_isomorphism=True) doctest:warning ... DeprecationWarning: use the option 'up_to_symmetry' instead of 'up_to_isomorphism' ... """ return list(self.cylinder_diagram_iterator( connected=connected, up_to_symmetry=up_to_symmetry))
[docs] def saddle_connections_graph(self, mutable=False): r""" Return the fat graph (or ribbon graph) made by the saddle connections. The return graph is a :class:`~surface_dynamics.topology.fat_graph.FatGraph`. The saddle connection labelled `i` on this diagram gets labels `2i` and `2i+1` in the graph (there one label per half-edge in the fat graph). The even labels correspond to half-edges in the bottom of cylinders while the odd ones correspond to the top. EXAMPLES:: sage: from surface_dynamics import Stratum sage: H11 = Stratum([1,1], k=1).unique_component() sage: for cd in H11.cylinder_diagrams(): ....: fg = cd.saddle_connections_graph() ....: print(cd.ncyls(), [comp.genus() for comp in fg.connected_components()]) 1 [1] 2 [0] 2 [0] 3 [0, 0] TESTS:: sage: from surface_dynamics import AbelianStrata sage: for g in (2, 3): ....: for H in AbelianStrata(genus=g): ....: for C in H.components(): ....: for cd in C.cylinder_diagrams(): ....: fg = cd.saddle_connections_graph() ....: assert fg.num_faces() == 2 * cd.ncyls() ....: assert fg.euler_characteristic() == cd.euler_characteristic() + 2 * cd.ncyls() ....: assert len(fg.connected_components()) == 1 + cd.ncyls() - cd.homological_dimension_of_cylinders() """ n = len(self._bot) fp = [-1] * (2 * n) for i in range(n): fp[2 * i] = 2 * self._bot[i] fp[2 * i + 1] = 2 * self._top[i] + 1 from surface_dynamics.topology.fat_graph import FatGraph return FatGraph(fp=fp, mutable=mutable)
[docs] def cyclic_direction(x,y,z): r""" Returns 1 or -1 depending on the cyclic ordering of (x,y,z) TESTS:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import cyclic_direction sage: cyclic_direction(0,1,2) 1 sage: cyclic_direction(1,2,0) 1 sage: cyclic_direction(2,0,1) 1 sage: cyclic_direction(2,1,0) -1 sage: cyclic_direction(1,0,2) -1 sage: cyclic_direction(0,2,1) -1 """ if (x < y < z) or (y < z < x) or (z < x < y): return 1 else: return -1
# iterators
[docs] def separatrix_diagram_fast_iterator(profile,ncyls=None): r""" Iterator over separatrix diagram with given ``profile`` Return a list of 3-tuples ``[bot, top, s]`` where ``bot`` and ``top`` are list on 0, ..., nseps-1 that corresponds to a separatrix diagram with profile ``profile`` while ``s`` is the element conjugacy class corresponding to the profile which equals ``bot * top``. If ncyls is not None, it should be a list of integers from which the number of cylinders is considered. Warning: each isomorphism class of separatrix diagram is output more than once in general. If you want a unique representative in each isomorphism class you may consider the method separatrix_diagram_iterator instead. Uses bounds from [Nav08]_. EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import separatrix_diagram_fast_iterator sage: for s in sorted(separatrix_diagram_fast_iterator([3])): print(s) ([0, 2, 1], [1, 0, 2], [(0, 1, 2)]) ([1, 2, 0], [1, 2, 0], [(0, 2, 1)]) ([2, 1, 0], [1, 0, 2], [(0, 2, 1)]) sage: for s in sorted(separatrix_diagram_fast_iterator([2,2])): print(s) ([0, 1, 3, 2], [1, 0, 2, 3], [(0, 1), (2, 3)]) ([0, 2, 3, 1], [1, 2, 0, 3], [(0, 1), (2, 3)]) ([1, 2, 3, 0], [1, 2, 3, 0], [(0, 2), (1, 3)]) ([1, 3, 2, 0], [1, 2, 0, 3], [(0, 2), (1, 3)]) ([2, 3, 0, 1], [1, 0, 3, 2], [(0, 3), (1, 2)]) ([3, 1, 0, 2], [1, 2, 0, 3], [(0, 3), (1, 2)]) ([3, 2, 1, 0], [1, 0, 3, 2], [(0, 2), (1, 3)]) """ from sage.combinat.partition import Partition,Partitions from sage.groups.perm_gps.symgp_conjugacy_class import conjugacy_class_iterator part = Partition(profile) n = sum(part) d = (n+len(part))//2 # the maximum number of cylinders is known # to be g+s-1 from a theorem of Y. Naveh tops = [[]] if ncyls is None: ncyls = list(range(1,d+1)) else: if isinstance(ncyls, numbers.Integral): ncyls = set([int(ncyls)]) else: ncyls = set(map(int,ncyls)) for i in ncyls: if i < 1 or i > d: raise ValueError("%d is not possible as number of cylinders"%i) # build the list of admissible tops up to conjugacy class for k in range(1,d+1): tops.append([]) if k in ncyls: for p in Partitions(n,length=k): tops[-1].append((canonical_perm(p),canonical_perm_i(p))) for s in conjugacy_class_iterator(part, list(range(n))): for k in range(len(tops)): for top,top_i in tops[k]: bot = list(range(len(top_i))) for cycle in s: for i in range(len(cycle)-1): bot[cycle[i]] = top_i[cycle[i+1]] bot[cycle[-1]] = top_i[cycle[0]] seen = [True]*len(bot) nb_cycles = 0 for i in range(len(bot)): if seen[i]: seen[i] = False nb_cycles += 1 if nb_cycles > k: break j = bot[i] while seen[j]: seen[j] = False j = bot[j] if nb_cycles == k: yield (bot,top,s)
[docs] def separatrix_diagram_iterator(profile, ncyls=None): r""" Iterator over separatrix diagram with given ``profile`` and number of cylinders. Warning: to prevent isomorphism class to be output twice the function implement a cache mechanism. If you intend to iterate through a huge class of separatrix_diagram and do not care about isomorphism problem use separatrix_diagram_fast_iterator instead. EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import separatrix_diagram_iterator sage: for s in sorted(separatrix_diagram_iterator([1,1])): print(s) (0,1)-(0,1) (0)(1)-(0)(1) sage: for s in sorted(separatrix_diagram_iterator([3])): print(s) (0,1,2)-(0,1,2) (0)(1,2)-(0,1)(2) sage: for s in sorted(separatrix_diagram_iterator([2,2])): print(s) (0,1,2,3)-(0,1,2,3) (0)(1,2,3)-(0,1,2)(3) (0,1)(2,3)-(0,2)(1,3) (0)(1)(2,3)-(0,1)(2)(3) sage: sum(1 for s in separatrix_diagram_iterator([3,2,2])) 64 """ res = set([]) for bot,top,_ in separatrix_diagram_fast_iterator(profile,ncyls): bot, top = two_non_connected_perms_canonical_labels(bot, top) s_perm = tuple(bot+top) if s_perm not in res: s = SeparatrixDiagram(bot, top, check=False, copy=False) syms = s._get_sym_perms() s = SeparatrixDiagram(*min(syms), check=False, copy=False) res.update(tuple(bot+top) for bot,top in syms) yield s
# # Cylinder diagram # (or completely periodic decomposition) #
[docs] def string_to_cycle(s): r""" TESTS:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import string_to_cycle sage: string_to_cycle('(3,1,2)') (3, 1, 2) """ if len(s) < 2: raise ValueError("Wrong syntax") if s[0] != '(': raise ValueError("A cycle string should start with an opening parenthesis") if s[-1] != ')': raise ValueError("A cycle string should end with a closing parenthesis") return tuple(int(i) for i in s[1:-1].split(','))
[docs] def orientation_cover(alpha,phi,a,verbose=0): r""" Build the cylinder diagram of Abelian differentials that double covers it. A quadratic differrential separatrix diagram is given by three permutations - sigma: the permutation of 1/2-separatrices around vertices - alpha: the permutation of 1/2-separatrices that describe the separatrices (it is a fixed point free involution) - phi: the permutation of 1/2-separatrices that describe the cycles. INPUT: - ``alpha`` -- permutation - ``phi`` -- permutation - ``a`` -- number of half separatrices EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import orientation_cover sage: alpha = [3, 2, 1, 0, 5, 4, 7, 6] sage: phi = [3, 1, 0, 2, 5, 4, 7, 6] sage: orientation_cover(alpha,phi,3) (0,2)-(0,1) (1)-(2) """ if verbose: print(" orientation cover") cyls = [] todo = [True]*a for i in range(a): if todo[i]: todo[i] = False b = [i] if alpha[i] >= a: t = [i] else: t = [alpha[i]] if verbose: print(" top from %d, bot from %d" % (i, t[0])) j = phi[i] if j >= a: j = phi[j] while j != i: todo[j] = False b.append(j) if alpha[j] >= a: t.append(j) else: t.append(alpha[j]) if verbose: print(" add %d to bot, add %d to top" % (j, b[-1])) j = phi[j] if j >= a: j = phi[j] cyls.append((b,t)) return CylinderDiagram(cyls)
#TODO: do something less stupid for symmetries
[docs] def hyperelliptic_cylinder_diagram_iterator(a,verbose=False): r""" Return an iterator over cylinder diagrams of Abelian differentials that double covers Q((a-2), -1^(a+2)). The generator is up to isomorphism. TODO: - An optimization could be obtained by considering the generation of k-subsets of {1,...,n} up to the cyclic symmetry of the tree. INPUT: - ``a`` - integer - angle of the conical singularity of the quadratic differential. - ``verbose`` - integer (default: 0) - output various information during the iteration (mainly for debug). EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import hyperelliptic_cylinder_diagram_iterator sage: it = hyperelliptic_cylinder_diagram_iterator(3) sage: c = next(it); c.is_isomorphic(CylinderDiagram('(0,1)-(0,2) (2)-(1)')) True sage: c.stratum_component() H_2(2)^hyp sage: hyp = Stratum([2,2], k=1).hyperelliptic_component() sage: all(c.stratum_component() == hyp for c in hyperelliptic_cylinder_diagram_iterator(6)) True """ from surface_dynamics.misc.plane_tree import admissible_plane_tree_iterator from sage.combinat.gray_codes import combinations cyl_diags = set([]) if verbose is True: verbose=1 B = [False]*(2*a+2) # open loops indicator # if B[k] is not False, it is where loop k starts sigma = list(range(1,a)) + [0] + list(range(a,2*a+2)) for t,n,l in admissible_plane_tree_iterator(a): # Build the initial tree L = [] p = 2*n-a # the number of poles ll = 0 # leaf counter s = 0 # 1/2-separatrix counter sp = a # pole counter alpha = [None]*(2*a+2) # edge permutation phi = [None]*(2*a+2) # face permutation if verbose: print("n = %d, l = %d, p = %d" % (n, l, p)) print("t =", t) for k in range(1,n+2): if verbose: print(" k = %d" % k) for kk in range(t[k-1],t[k]-1,-1): # close current loops if B[kk] is not False: if verbose: print(" close loop from %d to %d" % (B[kk], s)) alpha[B[kk]] = s alpha[s] = B[kk] phi[s] = (B[kk]-1)%a phi[B[kk]] = (s-1)%a s += 1 if verbose > 2: print(" alpha =", alpha) print(" phi =", phi) if ll < p and t[k] >= t[k+1]: L.append(s) # store the leaf # t[k] is a pole if verbose: print(" pole at %d" % s) alpha[s] = sp alpha[sp] = s phi[s] = sp phi[sp] = (s-1)%a s += 1 sp += 1 ll += 1 B[t[k]] = False if verbose > 2: print(" alpha =", alpha) print(" phi =", phi) elif k != n+1: # not at the end -> open a loop if t[k] >= t[k+1]: # store the leaf L.append(s) if verbose: print(" open loop at %d" % s) B[t[k]] = s s += 1 if verbose > 2: print(" alpha =", alpha) print(" phi =", phi) if verbose: print(" tree is over") print(" alpha =", alpha) print(" phi =", phi) for pp in range(a+p,2*a+2,2): if verbose: print(" paired poles (%d,%d)" % (pp, pp+1)) alpha[pp] = phi[pp] = pp+1 alpha[pp+1] = phi[pp+1] = pp if verbose > 1: print(" alpha =", alpha) print(" phi =", phi) assert len(L) == l, "This may not happen" # yield the canonical sepx. diag if verbose: print(" =" * (3*a+7)) print(" sigma =", sigma) print(" alpha =", alpha) print(" phi =", phi) print(" =" * (3*a+7)) c = orientation_cover(alpha,phi,a,verbose=verbose) c.canonical_label(inplace=True) if c not in cyl_diags: c_sym = [c] cc = c.horizontal_symmetry() cc.canonical_label(inplace=True) c_sym.append(cc) cc = c.vertical_symmetry() cc.canonical_label(inplace=True) c_sym.append(cc) cyl_diags.update(c_sym) yield c # Make the poles vary among the leaves #TODO: optimization when tree has nontrivial cyclic symmetry if p != 0 and p != l: if verbose: print(" start revolving door(%d,%d)" % (l, p)) print(" leaves are at separatrices", L) for i,j in combinations(l,p): i = L[i] j = L[j] if verbose > 1: print(" revolve i=%d j=%d" % (i, j)) a_i = alpha[i] a_j = alpha[j] s_i = sigma[i] s_a_j = sigma[a_j] ss_i = phi[alpha[i]] # sigma^-1(i) ss_j = phi[alpha[j]] # sigma^-1(j) a_s_i = alpha[s_i] a_s_a_j = alpha[s_a_j] assert sigma[j] == a_j, "sigma[%d] = %d != alpha[%d]"%(j,sigma[j],a_j) assert phi[i] == a_i, "phi[%d] != alpha[i]"%(i,) assert phi[a_s_i] == i, "phi[%d] != %d"%(a_s_i,i) assert phi[j] == j, "phi[%d] + %d"%(j,j) assert phi[a_s_a_j] == a_j, "phi[%d] != alpha[%d]"%(a_s_a_j,j) alpha[i] = a_j alpha[a_j] = i alpha[j] = a_i alpha[a_i] = j sigma[i] = a_j # old_sigma[j] sigma[a_j] = s_i # old_sigma[i] sigma[j] = s_a_j # old_sigma[a_j] phi[i] = i # old_phi[a_s_i] phi[j] = a_i # old_phi[i] if s_i != j: # and a_s_i == a_j phi[a_s_i] = a_j # old_phi[a_s_a_j] phi[a_i] = ss_j # old_phi[a_j] else: phi[a_i] = a_j if s_a_j != i: phi[a_j] = ss_i # old_phi[a_i] phi[a_s_a_j] = j # old_phi[j] else: phi[a_j] = j if verbose: print(" =" * (3*a+7)) print(" sigma =", sigma) print(" alpha =", alpha) print(" phi =", phi) print(" =" * (3*a+7)) for i in range(2*a+2): ii = phi[alpha[sigma[i]]] assert ii == i, "f_a_s(%d) == %d != %d"%(i,ii,i) for i in range(a,2*a+2): assert sigma[i] == i, "sigma[%d] = %d != %d"%(i,sigma[i],i) c = orientation_cover(alpha,phi,a,verbose=verbose) c.canonical_label(inplace=True) if c not in cyl_diags: c_sym = [c] cc = c.horizontal_symmetry() cc.canonical_label(inplace=True) c_sym.append(cc) cc = c.vertical_symmetry() cc.canonical_label(inplace=True) c_sym.append(cc) cyl_diags.update(c_sym) yield c # reinitialize sigma sigma = list(range(1,a)) + [0] + list(range(a,2*a+2))
[docs] @total_ordering class CylinderDiagram(SeparatrixDiagram): r""" Separatrix diagram with pairing. Each cylinder is stored as a couple (bot,top) for which the orientation is as follows:: +--------------------+ | <-- top -- | | | | | | -- bot --> | +--------------------+ INPUT: - ``data`` - list of 2-tuples - matching of bottom-top pairs EXAMPLES:: sage: from surface_dynamics import * We first build the simplest cylinder diagram which corresponds to a torus:: sage: CylinderDiagram([((0,),(0,))]) (0)-(0) The same initialized from a string:: sage: CylinderDiagram('(0)-(0)') (0)-(0) The following initialize a cylinder diagram with two cylinder which gives a surface of genus 2 with one singularity of degree 2:: sage: CylinderDiagram([((0,1),(0,2)),((2,),(1,))]) (0,1)-(0,2) (2)-(1) ALGORITHM: A cylinder is represented by a couple (i,j) where i is the min in bot and j is the min in top. The data _top_to_cyl and _bot_to_cyl corresponds to the association of a separatrix to the corresponding 2-tuple. The twist coordinate correspond to the shift between those two indices. """ def __init__(self, data, check=True): r""" TESTS:: sage: from surface_dynamics import * sage: c = CylinderDiagram([((0,),(0,))]) sage: CylinderDiagram(str(c)) == c True sage: loads(dumps(c)) == c True sage: CylinderDiagram('(0,1)-(2,1) (2)-(3)') Traceback (most recent call last): ... ValueError: each separatrix must appear once on bot and once on top """ bot = [] top = [] if isinstance(data,str): data = [(string_to_cycle(b),string_to_cycle(t)) for b,t in (w.split('-') for w in data.split(' '))] else: data = list(data) for b,t in data: bot.append(tuple(b)) top.append(tuple(t)) SeparatrixDiagram.__init__(self, tuple(bot), tuple(top), check=False) if sum(len(x) for x,y in data) != self.nseps() or\ sum(len(y) for x,y in data) != self.nseps(): raise ValueError('each separatrix must appear once on bot and once on top') b2c = [None] * self.nseps() # bot separatrix -> cylinder (bot_min_index, top_min_index) t2c = [None] * self.nseps() # top separatrix -> cylinder (bot_min_index, top_min_index) for b,t in data: cyl = (min(b),min(t)) for j in b: b2c[j] = cyl for j in t: t2c[j] = cyl self._bot_to_cyl = b2c self._top_to_cyl = t2c self._check() def __hash__(self): r""" Hash value: This is bad since we can modify it inplace!! """ return hash(tuple(self._bot_to_cyl + self._top_to_cyl + self._bot_cycles + self._top_cycles)) def _check(self): SeparatrixDiagram(self)._check() b2c = self._bot_to_cyl t2c = self._top_to_cyl for j in range(self.nseps()): bo = self.bot_orbit(b2c[j][0]) if j not in bo or b2c[j][0] != min(bo): raise ValueError("invalid data: j={} bo={} b2c[j]={}".format(j, bo, b2c[j])) to = self.top_orbit(t2c[j][1]) if j not in to or t2c[j][1] != min(to): raise ValueError("invalid data: j={} to={} t2c[j]={}".format(j, to, t2c[j]))
[docs] def weighted_adjacency_matrix(self, canonicalize=True): r""" Return the weighted adjacency matrix of this cylinder diagram. There is a vertex per cylinder and the weight from cyl1 to cyl2 is the number of saddle connections which are on top of cyl1 and in the bottom of cyl2. EXAMPLES:: sage: from surface_dynamics import Stratum sage: for cd in Stratum([1,1], k=1).cylinder_diagrams(): ....: print(cd.weighted_adjacency_matrix()) [4] [0 1] [1 2] [1 1] [1 1] [0 0 1] [0 0 1] [1 1 0] """ from sage.rings.all import ZZ from sage.matrix.constructor import matrix A = matrix(ZZ, self.ncyls()) cylinder_indices = {} for key in self._bot_to_cyl: if key not in cylinder_indices: cylinder_indices[key] = len(cylinder_indices) for i in range(self.nseps()): bot = cylinder_indices[self._bot_to_cyl[i]] top = cylinder_indices[self._top_to_cyl[i]] A[bot,top] += 1 if canonicalize: from sage.graphs.digraph import DiGraph D = DiGraph(A, format='weighted_adjacency_matrix') A = D.canonical_label(edge_labels=True).weighted_adjacency_matrix() A.set_immutable() return A
[docs] def lengths_minimal_solution(self): r""" Return an integral solution for the lengths equation with minimal sum """ from sage.numerical.mip import MixedIntegerLinearProgram M = MixedIntegerLinearProgram(maximization=False) x = M.new_variable(integer=True) M.set_objective(M.sum(x[i] for i in range(self.nseps()))) for i in range(self.nseps()): M.add_constraint(x[i] >= 1) for bot,top in self.cylinders(): M.add_constraint(M.sum(x[i] for i in bot) == M.sum(x[i] for i in top)) M.solve() v = M.get_values(x) return [v[i] for i in range(self.nseps())]
[docs] def tikz_string(self, cyl_height=0.8, cyl_sep=1.3, cyl_pos=None, sep_labels=None): r""" INPUT: - ``cyl_height`` - (optional) height of cylinders - ``cyl_sep`` - (optional) vertical space between cylinders - ``cyl_pos`` - (optional) position of left corners of cylinders. If provided, ``cyl_sep`` is ignored. - ``sep_labels`` - labels of the separatrices """ if cyl_pos is None: cyl_pos = [(0, i*(cyl_height+cyl_sep)) for i in range(self.nseps())] if sep_labels is None: sep_labels = range(self.nseps()) v = self.lengths_minimal_solution() s = [] for i,(bot,top) in enumerate(self.cylinders()): w = sum(v[i] for i in bot) assert w == sum(v[i] for i in top) xl, yl = cyl_pos[i] # fill the cylinder s.append('\\fill[gray!20] ({},{}) rectangle ({},{});'.format( xl,yl,xl+w,yl+cyl_height)) s.append('\\draw ({},{}) rectangle ({},{});'.format( xl,yl,xl+w,yl+cyl_height)) # singularities x = xl for i in bot: s.append('\\fill ({},{}) circle (2pt);'.format(x, yl)) s.append('\\node[below=-2] at ({},{}) {{{}}};'.format(x+v[i]/2, yl, sep_labels[i])) x += v[i] s.append('\\fill ({},{}) circle (2pt);'.format(x, yl)) x = xl+w for i in top: s.append('\\fill ({},{}) circle (2pt);'.format(x, yl+cyl_height)) s.append('\\node[above=-2] at ({},{}) {{{}}};'.format(x-v[i]/2, yl+cyl_height, sep_labels[i])) x -= v[i] s.append('\\fill ({},{}) circle (2pt);'.format(x, yl+cyl_height)) return '\n'.join(s)
def _repr_(self): r""" String representation TESTS:: sage: from surface_dynamics import * sage: c = CylinderDiagram([((0,1),(1,2)),((2,),(0,))]) sage: repr(c) #indirect doctest '(0,1)-(1,2) (2)-(0)' """ l = [] for b,t in self.cylinders(): l.append('(' + ','.join(map(str,b)) + ')-(' + ','.join(map(str,t)) + ')') return ' '.join(l) def __eq__(self, other): r""" TESTS:: sage: from surface_dynamics import Stratum, CylinderDiagram sage: c1 = CylinderDiagram('(0,5)-(0,4) (1,4)-(1,3) (2,3)-(2,5)') sage: c2 = CylinderDiagram('(0,5)-(1,3) (1,4)-(0,4) (2,3)-(2,5)') sage: c3 = CylinderDiagram('(0,5)-(2,5) (1,4)-(1,3) (2,3)-(0,4)') sage: c1 == c2 or c2 == c3 or c1 == c3 False sage: c1 != c2 and c2 != c3 and c1 != c3 True sage: from operator import not_ sage: C = Stratum([4], k=1).cylinder_diagrams() sage: for c1 in C: ....: assert c1 == c1 ....: assert not_(c1 != c1) ....: for c2 in C: ....: assert (c1 == c2) == (c2 == c1) == not_(c2 != c1) == not_(c1 != c2) """ if type(self) is not type(other): raise TypeError return SeparatrixDiagram.__eq__(self, other) and self._bot_to_cyl == other._bot_to_cyl def __ne__(self, other): if type(self) is not type(other): raise TypeError return not (self == other) def __lt__(self, other): r""" Comparison TESTS:: sage: from surface_dynamics import Stratum sage: from operator import not_ sage: C = Stratum([4], k=1).cylinder_diagrams() sage: for c1 in C: ....: for c2 in C: ....: assert (c1 < c2) == (c2 > c1) == not_(c1 >= c2) == not_(c2 <= c1) ....: assert (c1 <= c2) == (c2 >= c1) == not_(c1 > c2) == not_(c2 < c1) """ if type(self) is not type(other): raise TypeError if SeparatrixDiagram.__lt__(self, other): return True if SeparatrixDiagram.__lt__(other, self): return False if self._bot_to_cyl < other._bot_to_cyl: return True elif self._bot_to_cyl > other._bot_to_cyl: return False if self._top_to_cyl < other._top_to_cyl: return True elif self._top_to_cyl > other._top_to_cyl: return False # equality return False # # access to attribute #
[docs] def to_directed_graph(self): r""" Return a labeled directed graph that encodes the cylinder diagram. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,1,5)-(2,5) (2)-(0,1,3) (3,4)-(4)'); c (0,1,5)-(2,5) (2)-(0,1,3) (3,4)-(4) sage: G = c.to_directed_graph(); G Looped multi-digraph on 6 vertices sage: G.edges(sort=True) [(0, 1, 'b'), (0, 1, 't'), (0, 2, 'c'), (0, 5, 'c'), (1, 2, 'c'), (1, 3, 't'), (1, 5, 'b'), (1, 5, 'c'), (2, 0, 'c'), (2, 1, 'c'), (2, 2, 'b'), (2, 3, 'c'), (2, 5, 't'), (3, 0, 't'), (3, 4, 'b'), (3, 4, 'c'), (4, 3, 'b'), (4, 4, 'c'), (4, 4, 't'), (5, 0, 'b'), (5, 2, 'c'), (5, 2, 't'), (5, 5, 'c')] """ G = SeparatrixDiagram.to_directed_graph(self) for cb,ct in self.cylinders(): for i in cb: for j in ct: G.add_edge(i,j,'c') return G
[docs] def is_isomorphic(self, other, return_map=False): r""" Test whether this cylinder diagram is isomorphic to ``other``. EXAMPLES:: sage: from surface_dynamics import * sage: c1 = CylinderDiagram('(0,2,1)-(3,4,5) (3)-(1) (4)-(2) (5)-(0)') sage: c2 = CylinderDiagram('(0,2,1)-(3,5,4) (3)-(1) (4)-(2) (5)-(0)') sage: c1.is_isomorphic(c2) False sage: c3 = CylinderDiagram('(1,3,5)-(2,4,0) (2)-(5) (4)-(3) (0)-(1)') sage: c1.is_isomorphic(c3) True sage: ans, m = c1.is_isomorphic(c3, return_map=True) sage: assert ans is True and c1.relabel(m) == c3 sage: c4 = CylinderDiagram('(4,2,3)-(1,5,0) (1)-(3) (0)-(2) (5)-(4)') sage: c2.is_isomorphic(c4) True sage: ans, m = c2.is_isomorphic(c4, return_map=True) sage: assert ans is True and c2.relabel(m) == c4 sage: c1 = CylinderDiagram('(0,5)-(3,4) (1,4)-(2,5) (2)-(0) (3)-(1)') sage: c2 = CylinderDiagram('(0,5)-(3,4) (1,4)-(2,5) (2)-(1) (3)-(0)') sage: c1.is_isomorphic(c2) False sage: c1 = CylinderDiagram('(0,1)-(4,5) (2,4)-(0,3) (3,5)-(1,2)') sage: c2 = CylinderDiagram('(0,1)-(2,3) (2,4)-(1,4) (3,5)-(0,5)') sage: c3 = CylinderDiagram('(0,5)-(2,5) (1,4)-(0,4) (2,3)-(1,3)') sage: c1.is_isomorphic(c2) False sage: c1.is_isomorphic(c3) False sage: c2.is_isomorphic(c3) False TESTS:: sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0,3)-(3,7) (1,6,4)-(0,2,4,6,8) (2,8,7,5)-(1,5)') sage: c1 = c.relabel([4,7,0,3,2,1,6,8,5]) sage: c2 = c.relabel([6,3,1,8,2,0,4,5,7]) sage: assert c.is_isomorphic(c1) and c.is_isomorphic(c2) and c1.is_isomorphic(c2) sage: _, m1 = c1.is_isomorphic(c, return_map=True) sage: assert c1.relabel(m1) == c sage: _, m2 = c2.is_isomorphic(c, return_map=True) sage: assert c2.relabel(m2) == c """ if type(self) is not type(other): raise TypeError if return_map: s, sm = self.canonical_label(return_map=True) o, om = other.canonical_label(return_map=True) if s != o: return (False, None) else: ominv = {j:i for i,j in om.items()} return (True, {i: ominv[sm[i]] for i in sm}) else: return self.canonical_label() == other.canonical_label()
[docs] def relabel(self, perm, inplace=False): r""" EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0,3)-(3,7) (1,6,4)-(0,2,4,6,8) (2,8,7,5)-(1,5)') sage: c.relabel([3,1,2,6,4,5,0,7,8]) (0,4,1)-(0,8,3,2,4) (2,8,7,5)-(1,5) (3,6)-(6,7) sage: c (0,3)-(3,7) (1,6,4)-(0,2,4,6,8) (2,8,7,5)-(1,5) sage: c.relabel([3,1,2,6,4,5,0,7,8], inplace=True) (0,4,1)-(0,8,3,2,4) (2,8,7,5)-(1,5) (3,6)-(6,7) sage: c (0,4,1)-(0,8,3,2,4) (2,8,7,5)-(1,5) (3,6)-(6,7) TESTS:: sage: c = CylinderDiagram('(0,3)-(3,7) (1,6,4)-(0,2,4,6,8) (2,8,7,5)-(1,5)') sage: c1 = c.relabel([3,1,2,6,4,5,0,7,8], inplace=False) sage: c2 = c.relabel([3,1,2,6,4,5,0,7,8], inplace=True) sage: assert c is c2 and c1 == c2 sage: c1._check() sage: c2._check() sage: c1 = c.relabel([1,5,0,6,8,3,2,7,4], inplace=False) sage: c2 = c.relabel([1,5,0,6,8,3,2,7,4], inplace=True) sage: assert c is c2 and c1 == c2 sage: c1._check() sage: c2._check() """ if inplace: n = self.nseps() # find new (bot min, top min) in each cylinder new_mins = {} for b, t in self.cylinders(): bb = [perm[i] for i in b] tt = [perm[i] for i in t] new_mins[(min(b), min(t))] = (min(bb), min(tt)) b2c = [None] * n t2c = [None] * n for i in range(n): b2c[perm[i]] = new_mins[self._bot_to_cyl[i]] t2c[perm[i]] = new_mins[self._top_to_cyl[i]] self._bot_to_cyl = b2c self._top_to_cyl = t2c SeparatrixDiagram.relabel(self, perm, True) return self else: return CylinderDiagram([(tuple(perm[i] for i in b), tuple(perm[i] for i in t)) for b,t in self.cylinders()])
[docs] def canonical_label(self, inplace=False, return_map=False): r""" Return a cylinder diagram with canonical labels. .. NOTE:: The canonical label might change depending on your Sage version and the optional packages available. EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: c1 = CylinderDiagram('(0,5,4)-(0,3,2,1) (1,3,2)-(4,5)') sage: c1.canonical_label() # random (0,4,5)-(1,3,2,5) (1,3,2)-(0,4) sage: c2 = c1.relabel([2,4,5,1,3,0]) sage: c3 = c1.relabel([5,3,0,1,4,2]) sage: c1.canonical_label() == c2.canonical_label() == c3.canonical_label() True TESTS:: sage: import itertools sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0)-(1) (1,2)-(0,3) (3)-(2)') sage: can = c.canonical_label() sage: for p in itertools.permutations([0,1,2,3]): ....: cc = c.relabel(p) ....: ccan, m = cc.canonical_label(return_map=True) ....: assert cc.relabel(m) == can == ccan sage: c = CylinderDiagram('(0,4)-(0,3) (1,3)-(1,5) (2,5)-(2,4)') sage: can = c.canonical_label() sage: for p in itertools.permutations([0,1,2,3,4,5]): ....: cc = c.relabel(p) ....: ccan, m = cc.canonical_label(return_map=True) ....: assert cc.relabel(m) == can == ccan sage: c = CylinderDiagram('(0,1)-(0,2) (3,5,4)-(1,4,6) (2,6)-(3,5)') sage: c is c.canonical_label() False sage: c.canonical_label() is c.canonical_label() True sage: c.canonical_label().canonical_label() is c.canonical_label() True """ if not hasattr(self, '_normal_form'): G = self.to_directed_graph() _, m = G.canonical_label(certificate=True, edge_labels=True) # m = [m[i] for i in range(self.nseps())] # GG the new digraph # m from the digraph to its canonic labels cyls = [] for b,t in self.cylinders(): cyls.append((tuple(m[i] for i in b), tuple(m[i] for i in t))) self._normal_form = CylinderDiagram(cyls, check=False) self._normal_labels = m self._normal_form._normal_form = self._normal_form self._normal_form._normal_labels = range(self.nseps()) if inplace: self.__dict__ = self._normal_form.__dict__ if return_map: return self._normal_form, self._normal_labels elif not inplace: return self._normal_form
[docs] def separatrix_diagram(self): r""" Return the underlying separatrix diagram EXAMPLES:: sage: from surface_dynamics import * sage: s = SeparatrixDiagram('(0,1)(2,3,4)','(0,3)(1,4,2)'); s (0,1)(2,3,4)-(0,3)(1,4,2) sage: c = s.to_cylinder_diagram([(0,1),(1,0)]); c (0,1)-(1,4,2) (2,3,4)-(0,3) sage: c.separatrix_diagram() == s True """ return SeparatrixDiagram(self._bot,self._top,check=False)
[docs] def lengths_cone(self): r""" Return the rational polyhedron corresponding to the set of length with the given fixed heights. -> one can obtain ehrhart series for each of them! It tells us that we have a nice asymptotics... and the asymptotics is simply given by the volume of this polytope (up to the ignored twists parameters)! """ from sage.geometry.polyhedron.constructor import Polyhedron from sage.rings.integer_ring import ZZ n = self.nseps() eqns = [] ieqs = [] # lengths are non-negative e = [ZZ.zero()] * (n+1) for i in range(n): e[i+1] = ZZ.one() ieqs.append(e[:]) e[i+1] = ZZ.zero() # for each cylinder, length top = length bot for i,(bot,top) in enumerate(self.cylinders()): e = [ZZ.zero()] * (n+1) for j in bot: e[j+1] += ZZ.one() for j in top: e[j+1] -= ZZ.one() eqns.append(e) return Polyhedron(ieqs=ieqs, eqns=eqns)
[docs] def widths_generating_series(self, var='w'): r""" Generating series of the number of lengths solutions given the widths. WARNING: when a triangulation is involved, the generating series ignore some lower dimensional polytopes!! INPUT: - ``var`` - (optional) an optional name for the variable EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0,1)-(0,2) (2)-(1)') sage: c.widths_generating_series() # optional: latte_int (1)/((1 - w0)*(1 - w0*w1)) sage: c = CylinderDiagram('(0)-(2) (1,2,3)-(4,5) (4)-(3) (5)-(0,1)') sage: c.widths_generating_series() # optional: latte_int (1)/((1 - w1*w3)*(1 - w1*w2)*(1 - w0*w1*w3)) sage: c = CylinderDiagram('(0,1,3)-(0,2,5) (2,4)-(1,3) (5)-(4)') sage: c.widths_generating_series() # optional: latte_int (1)/((1 - w0)*(1 - w0*w1)*(1 - w0*w1*w2)^2) + (1)/((1 - w0)*(1 - w0*w1)^2*(1 - w0*w1*w2)) """ from sage.matrix.constructor import matrix from surface_dynamics.misc.multiplicative_multivariate_generating_series import MultiplicativeMultivariateGeneratingSeriesRing from sage.geometry.polyhedron.constructor import Polyhedron from sage.misc.misc_c import prod import re re_var = re.compile('w(\\d+)') sub1 = [None] * self.nseps() sub2 = [None] * self.nseps() for i,(top,bot) in enumerate(self.cylinders()): for j in top: sub1[j] = i for j in bot: sub2[j] = i M = MultiplicativeMultivariateGeneratingSeriesRing(self.ncyls(), 'w') V = M.free_module() ans = M.zero() dim = self.nseps() - self.ncyls() + 1 for rays in cone_triangulate(self.lengths_cone()): assert len(rays) == dim, (self, dim) num = simplex_count(rays) den1 = {} den2 = {} for r in rays: l1 = [0] * self.ncyls() l2 = [0] * self.ncyls() for j,c in enumerate(r): l1[sub1[j]] += c l2[sub2[j]] += c v1 = V(l1); v1.set_immutable() v2 = V(l2); v2.set_immutable() if v1 in den1: den1[v1] += 1 else: den1[v1] = 1 if v2 in den2: den2[v2] += 1 else: den2[v2] = 1 f1 = M.term(num, list(den1.items())) f2 = M.term(num, list(den2.items())) assert f1 == f2, (f1, f2) degrees = set(f1.degrees()) assert degrees == set([dim]), (self, degrees, dim) ans += f1 return ans
[docs] def volume_contribution(self): r""" Return the volume contribution of this cylinder diagram as a generalized multiple zeta values. EXAMPLES:: sage: from surface_dynamics import * sage: c0, c1 = Stratum([2], k=1).cylinder_diagrams() sage: v0 = c0.volume_contribution() # optional: latte_int sage: v0 # optional: latte_int (1/3)/((w)^4) sage: v0.integral_sum_as_mzv() # optional: latte_int 1/3*ζ(4) sage: v1 = c1.volume_contribution() # optional: latte_int sage: v1 # optional: latte_int (2/3)/((w1)*(w0 + w1)^3) + (1/3)/((w1)^2*(w0 + w1)^2) sage: v1.integral_sum_as_mzv() # optional: latte_int 2/3*ζ(1,3) + 1/3*ζ(2,2) sage: for c in Stratum([1,1], k=1).cylinder_diagrams(): # optional: latte_int ....: print(c, c.volume_contribution().integral_sum_as_mzv()) (0,3,1,2)-(0,3,1,2) 1/6*ζ(5) (0)-(1) (1,2,3)-(0,2,3) 1/3*ζ(2,3) + 1/3*ζ(3,2) (0,3)-(1,3) (1,2)-(0,2) ζ(1,4) + 1/3*ζ(2,3) (0,1)-(2,3) (2)-(1) (3)-(0) 1/3*ζ(1,3) + 1/3*ζ(2,2) - 1/3*ζ(2,3) - 1/3*ζ(3,2) + 1/3*ζ(4) - 1/3*ζ(5) sage: sum(c.volume_contribution() for c in Stratum([2,1,1], k=1).cylinder_diagrams(1)).integral_sum_as_mzv() # optional: latte_int 7/180*ζ(8) Detailed contribution of 2 cylinder diagrams:: sage: cyls = Stratum([2,1,1], k=1).cylinder_diagrams(2) sage: sum(cyls[k].volume_contribution() for k in [2,7,8,21,22]).integral_sum_as_mzv() # optional: latte_int 13/630*ζ(5,3) + 13/252*ζ(6,2) sage: sum(cyls[k].volume_contribution() for k in [0,11,19,20]).integral_sum_as_mzv() # optional: latte_int 1/21*ζ(4,4) + 4/63*ζ(5,3) sage: sum(cyls[k].volume_contribution() for k in [3,10]).integral_sum_as_mzv() # optional: latte_int 2/35*ζ(3,5) + 3/70*ζ(4,4) sage: sum(cyls[k].volume_contribution() for k in [13,23,24]).integral_sum_as_mzv() # optional: latte_int 2/21*ζ(2,6) + 4/105*ζ(3,5) sage: sum(cyls[k].volume_contribution() for k in [9]).integral_sum_as_mzv() # optional: latte_int 1/21*ζ(1,7) + 1/126*ζ(2,6) sage: sum(cyls[k].volume_contribution() for k in [5]).integral_sum_as_mzv() # optional: latte_int 2/105*ζ(3,5) + 1/70*ζ(4,4) sage: sum(cyls[k].volume_contribution() for k in [6,26]).integral_sum_as_mzv() # optional: latte_int 1/7*ζ(1,7) + 1/14*ζ(2,6) + 1/21*ζ(3,5) + 1/28*ζ(4,4) + 2/105*ζ(5,3) sage: sum(cyls[k].volume_contribution() for k in [1,14]).integral_sum_as_mzv() # optional: latte_int 2/7*ζ(1,7) + 1/7*ζ(2,6) + 2/21*ζ(3,5) + 3/70*ζ(4,4) sage: sum(cyls[k].volume_contribution() for k in [17,27]).integral_sum_as_mzv() # optional: latte_int 2/7*ζ(1,7) + 1/7*ζ(2,6) + 4/105*ζ(3,5) sage: sum(cyls[k].volume_contribution() for k in [4,25]).integral_sum_as_mzv() # optional: latte_int 1/7*ζ(1,7) + 1/42*ζ(2,6) sage: sum(cyls[k].volume_contribution() for k in [12,28]).integral_sum_as_mzv() # optional: latte_int 4/21*ζ(1,7) + 2/21*ζ(2,6) + 8/315*ζ(3,5) sage: sum(cyls[k].volume_contribution() for k in [15,16]).integral_sum_as_mzv() # optional: latte_int 4/21*ζ(1,7) + 2/21*ζ(2,6) + 8/315*ζ(3,5) sage: sum(cyls[k].volume_contribution() for k in [18]).integral_sum_as_mzv() # optional: latte_int 1/36*ζ(7) - 1/36*ζ(8) """ from surface_dynamics.misc.additive_multivariate_generating_series import AdditiveMultivariateGeneratingSeriesRing from sage.misc.misc_c import prod from sage.rings.integer_ring import ZZ # automorphism group aut_size = self.automorphism_group().cardinality() # equivalent sep diag in the component sym = ZZ(4) // (1 + sum(self.symmetries())) # numbering zeros mult = {} for i in perm_cycles(self.outgoing_edges_perm(), singletons=True): i = len(i) if i in mult: mult[i] += 1 else: mult[i] = 1 numbering = prod(ZZ(m).factorial() for m in mult.values()) F = self.widths_generating_series() deg, res = F.delta().residue() assert deg == self.nseps() + 1, (deg, self.nseps(), F, res) A = F.parent().residue_ring() res = sum(A.term(num, den) for num,den in res) m = ZZ(2) * numbering * sym / ZZ(self.nseps()).factorial() / aut_size return m * res
[docs] def cylinders(self): r""" Return the cylinders as a list of pairs ``(bot, top)``. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,2,4)-(1,3,5) (1,5)-(0) (3)-(2,4)') sage: c (0,2,4)-(1,3,5) (1,5)-(0) (3)-(2,4) sage: c.cylinders() [((0, 2, 4), (1, 3, 5)), ((1, 5), (0,)), ((3,), (2, 4))] """ return [(b,self.top_orbit(self._bot_to_cyl[b[0]][1])) for b in self.bot_cycle_tuples()]
[docs] def bot_to_cyl(self, j): r""" Return the cylinder above the ``j``-th separatrix. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,2,4)-(1,3,5) (1,5)-(0) (3)-(2,4)') sage: c (0,2,4)-(1,3,5) (1,5)-(0) (3)-(2,4) sage: c.bot_to_cyl(0) ((0, 2, 4), (1, 3, 5)) sage: c.bot_to_cyl(1) ((1, 5), (0,)) sage: c.bot_to_cyl(3) ((3,), (2, 4)) """ jb,jt = self._bot_to_cyl[j] return self.bot_orbit(jb), self.top_orbit(jt)
[docs] def top_to_cyl(self, j): r""" Return the cylinder below the ``j``-th separatrix. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,2,4)-(1,3,5) (1,5)-(0) (3)-(2,4)') sage: c.top_to_cyl(0) ((1, 5), (0,)) sage: c.top_to_cyl(2) ((3,), (2, 4)) """ jb,jt = self._top_to_cyl[j] return self.bot_orbit(jb), self.top_orbit(jt)
# # properties #
[docs] def is_connected(self): r""" Test the connectedness of this cylinder diagram. TESTS:: sage: from surface_dynamics import * sage: CylinderDiagram('(0)-(1) (1)-(0)').is_connected() True sage: CylinderDiagram('(0,1)-(0) (2)-(1,2)').is_connected() True sage: CylinderDiagram('(0)-(0) (1)-(1)').is_connected() False sage: CylinderDiagram('(0,1)-(3) (2)-(2) (3)-(0,1)').is_connected() False """ from sage.graphs.graph import Graph G = Graph(multiedges=True, loops=True) for b,t in self.cylinders(): G.add_edges((b[0],b[j]) for j in range(1,len(b))) G.add_edges((t[0],t[j]) for j in range(1,len(t))) G.add_edge(b[0],t[0]) return G.num_verts() == self.nseps() and G.is_connected()
# # symmetries #
[docs] def inverse(self): r""" Return the inverse cylinder diagram. The inverse of a cylinder diagram is the cylinder diagram in which all cylinders have been reversed. It corresponds to the multiplication by `-1` on the underlying Abelian differential. Combinatorially the operation is b0-t0 ... bk-tk becomes t0-b0 ... tk-bk EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,1)-(0,2) (3,5,4)-(1,4,6) (2,6)-(3,5)') sage: c (0,1)-(0,2) (2,6)-(3,5) (3,5,4)-(1,4,6) sage: c.inverse() (0,2)-(0,1) (1,4,6)-(3,5,4) (3,5)-(2,6) The operation can also be defined at the level of the separatrix diagrams and the two operation commutes:: sage: c.separatrix_diagram().inverse() == c.inverse().separatrix_diagram() True The inversion can also be seen as the composition of the horizontal and vertical symmetries:: sage: c.horizontal_symmetry().vertical_symmetry() == c.inverse() True sage: c.vertical_symmetry().horizontal_symmetry() == c.inverse() True The inversion is an involution on cylinder diagrams:: sage: all(cc.inverse().inverse() == cc for cc in Stratum([4], k=1).cylinder_diagrams()) # long time True """ return CylinderDiagram([(t,b) for (b,t) in self.cylinders()])
[docs] def vertical_symmetry(self): r""" Return the cylinder diagram obtained by reflecting the cylinder configuration along the vertical axis. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,3,4)-(0,3,5) (1,2,5)-(1,2,4)') sage: c.vertical_symmetry() (0,4,3)-(0,5,3) (1,5,2)-(1,4,2) sage: c.separatrix_diagram().vertical_symmetry() == c.vertical_symmetry().separatrix_diagram() True sage: A = Stratum([2,2], k=1) sage: all(c.vertical_symmetry().stratum() == A for c in A.cylinder_diagrams()) True """ return CylinderDiagram(tuple((b[::-1],t[::-1]) for b,t in self.cylinders()))
[docs] def horizontal_symmetry(self): r""" Return the cylinder diagram obtained by reflecting the cylinder configuration along the horizontal axis. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,3,4)-(0,3,5) (1,2,5)-(1,2,4)') sage: c.horizontal_symmetry() (0,5,3)-(0,4,3) (1,4,2)-(1,5,2) sage: c.separatrix_diagram().horizontal_symmetry() == c.horizontal_symmetry().separatrix_diagram() True sage: A = Stratum([2,2], k=1) sage: all(c.horizontal_symmetry().stratum() == A for c in A.cylinder_diagrams()) True """ return CylinderDiagram(tuple((t[::-1],b[::-1]) for b,t in self.cylinders()))
[docs] def symmetries(self): r""" Return a triple ``(horiz_sym, vert_sym, inv_sym)`` EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,1)-(2,3,5) (2,3,4)-(1) (5)-(0,4)') sage: c.symmetries() (False, True, False) sage: c.horizontal_symmetry().is_isomorphic(c) False sage: c.vertical_symmetry().is_isomorphic(c) True sage: c.inverse().is_isomorphic(c) False sage: CylinderDiagram('(0,2,1,4,3)-(0,4,2,1,3)').symmetries() (True, True, True) sage: CylinderDiagram('(0,3)-(0,4,5) (1,4,2)-(1,3) (5)-(2)').symmetries() (False, False, True) sage: CylinderDiagram('(0,2,3,1)-(0,2,1,4) (4)-(3)').symmetries() (True, False, False) sage: CylinderDiagram('(0,1,2)-(0,3,1,4) (3,4)-(2)').symmetries() (False, True, False) sage: CylinderDiagram('(0,1)-(0,3,4) (2,3)-(1) (4)-(2)').symmetries() (False, False, False) """ n = len(self._top) # we first consider the separatrix diagram as it is much faster bot, top = two_non_connected_perms_canonical_labels(self._top, self._bot) # compute the inverses ibot = [None]*n itop = [None]*n for i in range(n): ibot[bot[i]] = i itop[top[i]] = i # horiz bot1, top1 = two_non_connected_perms_canonical_labels(itop, ibot) sep_horiz_sym = bot == bot1 and top == top1 # vert bot1, top1 = two_non_connected_perms_canonical_labels(ibot, itop) sep_vert_sym = bot == bot1 and top == top1 # inv if sep_horiz_sym and sep_vert_sym: # got the two sep_inverse_sym = True elif sep_horiz_sym^sep_vert_sym: # got exactly one sep_inverse_sym = False else: # none of them bot1, top1 = two_non_connected_perms_canonical_labels(top, bot) sep_inverse_sym = bot == bot1 and top == top1 # next we check the cylinder diagram if needed if sep_horiz_sym: c1 = self.canonical_label(inplace=False) c2 = self.horizontal_symmetry().canonical_label(inplace=False) horiz_sym = c1 == c2 else: horiz_sym = False if sep_vert_sym: c1 = self.canonical_label(inplace=False) c2 = self.vertical_symmetry().canonical_label(inplace=False) vert_sym = c1 == c2 else: vert_sym = False if horiz_sym and vert_sym: # got the two inverse_sym = True elif horiz_sym^vert_sym: # got exactly one inverse_sym = False else: # none of them c1 = self.canonical_label(inplace=False) c2 = self.inverse().canonical_label(inplace=False) inverse_sym = c1 == c2 return (horiz_sym, vert_sym, inverse_sym)
[docs] def automorphism_group(self, order=False): r""" Return the automorphism group INPUT: - ``order`` - boolean (default: False) - whether or not return the order of the group EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram('(0,1)-(0,2) (2,3)-(1,3)') sage: cyl.automorphism_group() Permutation Group with generators [(0,3)(1,2)] """ return self.to_directed_graph().automorphism_group(edge_labels=True, order=order)
[docs] def is_hyperelliptic(self,verbose=False): r""" Test of hyperellipticity Each stratum of Abelian differentials as up to three connected components. For the strata H(2g-2) and H(g-1,g-1) there is a special component called *hyperelliptic* in which all translation surfaces `(X,\omega)` in that component are such that `X` is hyperelliptic. This function returns True if and only if the cylinder diagrams correspond to a decomposition of a surface associated to the hyperelliptic components in H(2g-2) or H(g-1,g-1). EXAMPLES:: sage: from surface_dynamics import * In genus 2, strata H(2) and H(1,1), all surfaces are hyperelliptic:: sage: for c in Stratum([2], k=1).cylinder_diagrams(): ....: print("%d %s" % (c.ncyls(), c.is_hyperelliptic())) 1 True 2 True sage: for c in Stratum([1,1], k=1).cylinder_diagrams(): ....: print("%d %s" % (c.ncyls(), c.is_hyperelliptic())) 1 True 2 True 2 True 3 True In higher genera, some of them are, some of them are not:: sage: C = Stratum([4], k=1).cylinder_diagrams() sage: len(C) 15 sage: sum(c.is_hyperelliptic() for c in C) 5 sage: C = Stratum([2,2], k=1).cylinder_diagrams() sage: len(C) 41 sage: sum(c.is_hyperelliptic() for c in C) 11 """ z = self.stratum().signature() if z == [0] or z == [2] or z == [1,1]: return True if 0 in z: raise NotImplementedError("is_hyperelliptic method not implemented for cylinder diagrams with fake zeros") ns = self.nseps() if len(z) == 1: # minimal stratum H(2g-2) for cy in self.cylinders(): if len(cy[0]) != len(cy[1]): return False b = self.bot() t = self.top() # build list of seps in cyclic order around zero, starting by outgoing sep 0 lout = [0] lin = [] for _ in range(ns): lin.append(t[lout[-1]]) lout.append(b[lin[-1]]) if verbose: print('lin ', lin) print('lout', lout) # build involution on separatrices p = [None]*ns for a in range(ns): p[lout[a]] = lin[(a+ns//2)%ns] if verbose: print("involution on seps", p) # wsep = counter of sepatrices with a wpt wsep = 0 for cy in self.cylinders(): for k in cy[0]: # check that p(k) is on the top of the cyl that has k on its bottom if p[k] not in cy[1]: return False # check that if k is on bot and top of cyl, then p(k) = k if k in cy[1]: if k != p[k]: return False wsep += 1 if verbose: print("wsep", wsep) # check number of w pts if wsep + 2*self.ncyls() != z[0] + 3: return False # check that cylinders are stable under involution if self != CylinderDiagram( [(cy[0],tuple(map(lambda x: p[x],cy[0]))) for cy in self.cylinders()]): return False return True elif len(z) == 2: # should be stratum H(g-1,g-1) if z[0] != z[1]: return False for cy in self.cylinders(): if len(cy[0]) != len(cy[1]): return False b = self.bot() t = self.top() # build list of seps in cyclic order around first zero, starting by outgoing sep 0 lout = [0] lin = [] for _ in range(ns//2): lin.append(t[lout[-1]]) lout.append(b[lin[-1]]) if verbose: print('lin ', lin) print('lout', lout) # build list of seps in cyclic order around the other zero a = 0 while a in lout: a += 1 llout = [a] llin = [] for _ in range(ns//2): llin.append(t[llout[-1]]) llout.append(b[llin[-1]]) if verbose: print('llin ', llin) print('llout', llout) # now, try each way the involution could send lout to llout for j in range(ns//2): test = True # build involution on separatrices p = [None]*ns for a in range(ns//2): p[lout[a]] = llin[(j+a)%(ns//2)] p[llout[a]] = lin[(a-j-1)%(ns//2)] if verbose: print("involution on seps", p) wsep = 0 for cy in self.cylinders(): for k in cy[0]: # check that p(k) is on the top of the cyl that has k on its bottom if p[k] not in cy[1]: test = False break # check that if k is on bot and top of cyl, then p(k) = k if k in cy[1]: if k != p[k]: test = False break wsep += 1 if test is False: break if test is False: continue # try next j if verbose: print("wsep", wsep) # check number of w pts if wsep + 2*self.ncyls() != 2*z[0] + 4: continue # try next j # check that cylinders are stable under involution if self != CylinderDiagram( [(cy[0],tuple(map(lambda x: p[x],cy[0]))) for cy in self.cylinders()]): continue # try next j return True return False else: return False
# # construction #
[docs] def dual_graph(self): r""" The dual graph of the stable curve at infinity in the horizontal direction. This graph is defines as follows. Cut each horizontal cylinder along a circumference, then the vertices are the equivalence class of half cylinder modulo the relation "linked by a saddle connection" and the edges are the circumferences. EXAMPLES:: sage: from surface_dynamics import * We consider the three diagrams of the stratum H(1,1):: sage: c1 = CylinderDiagram('(0,1,2,3)-(0,1,2,3)') sage: c1.stratum() H_2(1^2) sage: c1.dual_graph() Looped multi-graph on 1 vertex sage: c2 = CylinderDiagram('(0,1)-(1,2) (2,3)-(0,3)') sage: c2.stratum() H_2(1^2) sage: c2.dual_graph() Looped multi-graph on 1 vertex sage: c3 = CylinderDiagram('(0,1)-(2,3) (2)-(0) (3)-(1)') sage: c3.stratum() H_2(1^2) sage: c3.dual_graph() Looped multi-graph on 2 vertices """ from sage.graphs.graph import Graph cb = self.bot_cycle_tuples() ct = self.top_cycle_tuples() # first compute the equivalence class of half cylinders (i.e. gives vertices) V = Graph() V.add_vertices('%db' %c[0] for c in cb) V.add_vertices('%dt' %c[0] for c in ct) for i in range(self.nseps()): V.add_edge( ('%db' %self._bot_to_cyl[i][0]), ('%dt' %self._top_to_cyl[i][1])) # the dual graph G = Graph(loops=True, multiedges=True) cc = map(tuple, V.connected_components(sort=False)) hc2cc = {} # half-cyl to conn comp for c in cc: for e in c: hc2cc[e] = c for c in self.cylinders(): G.add_edge(hc2cc['%db' %c[0][0]],hc2cc['%dt' %c[1][0]],(c[0][0],c[1][0])) return G
[docs] def matrix_relation(self): r""" Return the matrix of relation on the lengths of the separatrices. The output matrix has size `ncyls \times nseps`. EXAMPLES:: sage: from surface_dynamics import * For a one cylinder diagram, there is no relations:: sage: cyl = CylinderDiagram('(0,1,2,3)-(0,1,2,3)') sage: cyl.matrix_relation() [0 0 0 0] Here is an example in the stratum H(2):: sage: cyl = CylinderDiagram('(0,1)-(0,2) (2)-(1)') sage: cyl.stratum() H_2(2) sage: cyl.matrix_relation() [ 0 1 -1] [ 0 -1 1] """ from sage.matrix.constructor import matrix m = matrix(self.ncyls(),self.nseps(),sparse=True) for i,(top,bot) in enumerate(self.cylinders()): for t in top: m[i,t] = 1 for b in bot: m[i,b] += -1 return m
# # Abelian differentials / coordinates #
[docs] def stratum_component(self): r""" Return the connected component of stratum of ``self``. EXAMPLES:: sage: from surface_dynamics import * sage: CylinderDiagram('(0,1)-(0,2) (2)-(1)').stratum_component() H_2(2)^hyp sage: c = CylinderDiagram('(0,3,2,1)-(1,4,3,2) (4,7,6,5)-(0,7,6,5)') sage: c.stratum_component() H_4(3^2)^hyp sage: c = CylinderDiagram('(0,1,4)-(1,6,7) (2,5,3)-(0,2,4) (6)-(5) (7)-(3)') sage: c.stratum_component() H_4(3^2)^nonhyp sage: c = CylinderDiagram('(0,6)-(1,7) (1,5,4,3,2)-(2,6,5,4,3) (7,9,8)-(0,9,8)') sage: c.stratum_component() H_5(4^2)^hyp sage: c = CylinderDiagram('(0,2,6,1)-(0,8,1,9,2,5,7,4) (3,7,4,8,9,5)-(3,6)') sage: c.stratum_component() H_5(4^2)^even sage: c = CylinderDiagram('(3,7,4,8,9,5)-(0,8,1,9,2,5,7,4) (0,2,6,1)-(3,6)') sage: c.stratum_component() H_5(4^2)^odd """ # TODO: we reimplement the very same logic in interval_exchanges.template.stratum_component() stratum = self.stratum() if stratum.is_connected(): return stratum.unique_component() if stratum.has_hyperelliptic_component(): if self.is_hyperelliptic(): return stratum.hyperelliptic_component() # TODO: we assume that the first entry is the hyperelliptic one cc = stratum.connected_components() if len(cc) == 2: return cc[1] if self.spin_parity() == 0: return stratum.even_component() else: return stratum.odd_component()
[docs] def smallest_integer_lengths(self): r""" Check if there is a integer solution that satisfy the cylinder conditions. If there is a solution, the function returns a list a pair ``(total_length, list_of_lengths)`` that consists of the sum of the length of the separatrices together with the list of lengths. Otherwise, returns False. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,1)-(0,2) (2,3)-(1,3)') sage: c.smallest_integer_lengths() (4, [1, 1, 1, 1]) sage: c = CylinderDiagram('(0,1,2)-(3) (3)-(0) (4)-(1,2,4)') sage: c.smallest_integer_lengths() False sage: c = CylinderDiagram('(0,1)-(0,5) (2)-(3) (3,6)-(8) (4,8)-(6,7) (5)-(2,4) (7)-(1)') sage: c.smallest_integer_lengths() (13, [1, 2, 1, 1, 1, 2, 1, 2, 2]) """ if self.ncyls() == 1: return (self.nseps(), [1] * self.nseps()) from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException n = self.nseps() bot = self.bot_cycle_tuples() top = [self.top_orbit(self._bot_to_cyl[b[0]][1]) for b in bot] p = MixedIntegerLinearProgram(maximization=False) scl = p.new_variable(nonnegative=True) p.set_objective(sum(scl[i] for i in range(n))) for i in range(n): p.add_constraint(scl[i],min=1) for b,t in zip(bot,top): p.add_constraint( p.sum(scl[i] for i in set(b).difference(t)) == p.sum(scl[i] for i in set(t).difference(b)) ) try: total = Integer(p.solve()) lengths = [Integer(p.get_values(scl[i])) for i in range(n)] return total, lengths except MIPSolverException: return False
# # homology #
[docs] def to_ribbon_graph(self): r""" Return a ribbon graph A *ribbon graph* is a graph embedded in an oriented surface such that its complement is a union of topological discs. To a cylinder diagram we associate the graph which consists of separatrices together with a choice of one vertical edge in each cylinder. The edges of the ribbon graph are labeled by ``(i,nseps+i)`` for separatrices and by ``(2(nseps+j),2(nseps+j)+1)`` for vertical in cylinders. EXAMPLES:: sage: from surface_dynamics import * sage: C = CylinderDiagram([((0,1),(0,2)),((2,),(1,))]) sage: C.stratum() H_2(2) sage: R = C.to_ribbon_graph(); R Ribbon graph with 1 vertex, 5 edges and 2 faces sage: l,m = R.cycle_basis(intersection=True) sage: m.rank() == 2 * C.genus() True TESTS:: sage: f = lambda c: c.to_ribbon_graph().cycle_basis(intersection=True)[1] sage: a = Stratum([2], k=1) sage: all(f(c).rank() == 4 for c in a.cylinder_diagrams()) True sage: a = Stratum([1,1], k=1) sage: all(f(c).rank() == 4 for c in a.cylinder_diagrams()) True """ from .homology import RibbonGraphWithAngles n = self.nseps() m = self.ncyls() edges = [(i,n+i) for i in range(n)] + [(2*(n+i),2*(n+i)+1) for i in range(m)] faces = [] angles = [1] * (2*(n+m)) half = Integer(1)/Integer(2) for j,(b,t) in enumerate(self.cylinders()): face = [i for i in b] + [2*(n+j)] + [n+i for i in t[1:]+t[:1]] + [2*(n+j)+1] faces.append(tuple(face)) t1 = t[1] if len(t) > 1 else t[0] angles[b[0]] = angles[n+t1] = angles[2*(n+j)] = angles[2*(n+j)+1] = half return RibbonGraphWithAngles(edges=edges,faces=faces,angles=angles)
[docs] def to_ribbon_graph_with_holonomies(self, lengths, heights, twists): from .homology import RibbonGraphWithHolonomies n = self.nseps() m = self.ncyls() edges = [(i,n+i) for i in range(n)] + [(2*(n+i),2*(n+i)+1) for i in range(m)] faces = [] for j,(b,t) in enumerate(self.cylinders()): face = [i for i in b] + [2*(n+j)] + [n+i for i in t[1:]+t[:1]] + [2*(n+j)+1] faces.append(tuple(face)) holonomies = [None] * (2*(n+m)) for i in range(n): holonomies[i] = (lengths[i],0) holonomies[n+i] = (-lengths[i],0) for i in range(m): holonomies[2*(n+i)] = (twists[i], heights[i]) holonomies[2*(n+i)+1] = (-twists[i], -heights[i]) return RibbonGraphWithHolonomies(edges=edges,faces=faces,holonomies=holonomies)
[docs] def spin_parity(self): r""" Return the spin parity of any surface that is built from this cylinder diagram. EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram('(0,1,2,3,4)-(0,1,2,3,4)') sage: c.spin_parity() 0 sage: c = CylinderDiagram('(0,1,2,3,4)-(0,1,4,2,3)') sage: c.spin_parity() 1 sage: c = CylinderDiagram('(0,2,6,1)-(0,8,1,9,2,5,7,4) (3,7,4,8,9,5)-(3,6)') sage: c.spin_parity() 0 sage: c = CylinderDiagram('(3,7,4,8,9,5)-(0,8,1,9,2,5,7,4) (0,2,6,1)-(3,6)') sage: c.spin_parity() 1 """ if any(z % 2 for z in self.stratum().signature()): return None return self.to_ribbon_graph().spin_parity()
# def circumferences_of_cylinders(self,ring=None): # r""" # Return the set of circumferences of cylinders as cycles in the chain # space. # """ # from sage.modules.free_module import FreeModule # from copy import copy # # if ring is None: # from sage.rings.integer_ring import ZZ # ring = ZZ # # g = self.to_ribbon_graph() # C = g.chain_complex(ring) # C1 = C.chain_space(1) # Z1 = C.cycle_space(1) # n = g.num_edges() # # V = FreeModule(ring, n) # # l = [] # for (b,t) in self.cylinders(): # v = copy(V.zero()) # for i in b: # v[g.dart_to_edge(i,orientation=True)] = 1 # l.append(Z1(V(v))) # return l # # build one or many origamis #
[docs] def an_origami(self): r""" Return one origami with this diagram cylinder if any. EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram('(0,1)-(0,2) (2,3)-(1,3)') sage: cyl.an_origami() (1,2)(3,4) (1,3,4,2) """ res = self.smallest_integer_lengths() if res is False: return False m,lengths = res widths = [sum(lengths[i] for i in bot) for bot in self.bot_cycle_tuples()] areas = [widths[i] for i in range(self.ncyls())] v = [0] for a in areas: v.append(v[-1] + a) # initialization of bottom squares: sep_i -> bottom position sep_bottom_pos = [None] * self.nseps() for i,(bot,_) in enumerate(self.cylinders()): w = 0 for j in bot: sep_bottom_pos[j] = v[i] + w w += lengths[j] # initialization of sigma_h which remains constant lx = list(range(1, v[-1]+1)) for i in range(self.ncyls()): for j in range(v[i], v[i+1], widths[i]): lx[j+widths[i]-1] = j # initialization of y except the top ly = [] for i in range(self.ncyls()): ly.extend([None]*widths[i]) # build the top interval without twist for i,(_,top_seps) in enumerate(self.cylinders()): top = [] for k in reversed(top_seps): top.extend(range(sep_bottom_pos[k],sep_bottom_pos[k]+lengths[k])) ly[v[i+1]-widths[i]:v[i+1]] = top # yield the origami without twist from surface_dynamics.flat_surfaces.origamis.origami import Origami_dense_pyx return Origami_dense_pyx(tuple(lx), tuple(ly))
[docs] def origami_iterator(self,n): r""" Iteration over all origamis with n squares. INPUT: - ``n`` - positive integer - the number of squares EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram('(0,1,2)-(3,1,2) (3)-(0)') sage: for o in cyl.origami_iterator(4): ....: print(o) ....: print(o.stratum()) ....: print(o.nb_squares()) (1,2,3)(4) (1,4)(2,3) H_2(1^2) 4 (1,2,3)(4) (1,2,4)(3) H_2(1^2) 4 (1,2,3)(4) (1,3,4)(2) H_2(1^2) 4 """ for w, h in self.widths_and_heights_iterator(n): yield from self.cylcoord_to_origami_iterator(w, h)
[docs] def origamis(self,n=None): r""" Return the set of origamis having ``n`` squares. If ``n`` is None then return the origamis with less number of squares. EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram('(0,1,2)-(0,1,3) (3)-(2)') sage: o5 = cyl.origamis(5) sage: o5[0] (1,2,3,4)(5) (1,5,4,2,3) sage: o5[1].nb_squares() 5 sage: o5[2].stratum_component() H_2(1^2)^hyp TESTS:: sage: c1 = CylinderDiagram("(0,1)-(0,3,4,5) (2,3,5)-(1) (4)-(2)") sage: c2 = CylinderDiagram("(0,1)-(0,5) (2)-(4) (3,4)-(1) (5)-(2,3)") sage: c3 = CylinderDiagram("(0,3)-(5) (1)-(0) (2,5)-(3,4) (4)-(1,2)") sage: len(c1.origamis(8)) 12 sage: len(c2.origamis(8)) 12 sage: len(c3.origamis(8)) 12 """ if n is None: res = self.smallest_integer_lengths() if res is False: return False n = res[0] return list(self.origami_iterator(n))
[docs] def widths_and_heights_iterator(self, n, height_one=False): """ Iterate over the possible integer widths and heights of the cylinders for which the corresponding translation surface has area ``n``. At each iteration, the output is a pair of ``(lengths, heights)``. You can then use :meth:`cylcoord_to_origami` to build the corresponding origami. INPUT: - ``height_one`` -- (boolean default ``False``) whether to return only coordinates with cylinder height one. EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram([((0,1),(0,2)),((2,),(1,))]) sage: cyl (0,1)-(0,2) (2)-(1) sage: it = cyl.widths_and_heights_iterator(10) sage: l,h = next(it) sage: print(l) (2, 1, 1) sage: print(h) [3, 1] sage: cyl.cylcoord_to_origami(l,h) (1,2,3)(4,5,6)(7,8,9)(10) (1,4,7)(2,5,8)(3,6,9,10) sage: it = cyl.widths_and_heights_iterator(10, height_one=True) sage: l,h = next(it) sage: print(l) (8, 1, 1) sage: print(h) [1, 1] sage: cyl.cylcoord_to_origami(l,h) (1,2,3,4,5,6,7,8,9)(10) (1)(2)(3)(4)(5)(6)(7)(8)(9,10) TESTS:: sage: c1 = CylinderDiagram("(0,1)-(0,3,4,5) (2,3,5)-(1) (4)-(2)") sage: c2 = CylinderDiagram("(0,1)-(0,5) (2)-(4) (3,4)-(1) (5)-(2,3)") sage: c3 = CylinderDiagram("(0,3)-(5) (1)-(0) (2,5)-(3,4) (4)-(1,2)") sage: list(c1.widths_and_heights_iterator(8)) [((1, 3, 1, 1, 1, 1), [1, 1, 1])] sage: list(c2.widths_and_heights_iterator(8)) [((1, 2, 1, 1, 1, 2), [1, 1, 1, 1])] sage: list(c3.widths_and_heights_iterator(8)) [((1, 1, 1, 1, 2, 2), [1, 1, 1, 1])] sage: for n in range(8, 12): ....: for c in c1,c2,c3: ....: L1 = [wh for wh in c.widths_and_heights_iterator(n) if all(h == 1 for h in wh[1])] ....: L2 = list(c.widths_and_heights_iterator(n, height_one=True)) ....: assert L1 == L2, (L1, L2) """ from sage.combinat.integer_lists import IntegerListsLex from sage.rings.integer_ring import ZZ from sage.modules.free_module import FreeModule from copy import copy V = FreeModule(ZZ,self.nseps()) m = self.matrix_relation() min_lengths = [1] * self.nseps() for i in range(self.ncyls()): pos = m.nonzero_positions_in_row(i) pos_m = list(filter(lambda j: m[i,j] == -1, pos)) pos_p = list(filter(lambda j: m[i,j] == 1, pos)) if len(pos_m) == 1: min_lengths[pos_m[0]] = max(min_lengths[pos_m[0]], len(pos_p)) if len(pos_p) == 1: min_lengths[pos_p[0]] = max(min_lengths[pos_m[0]], len(pos_m)) min_widths = [] for bot,top in self.cylinders(): min_widths.append(max( sum(min_lengths[j] for j in top), sum(min_lengths[j] for j in bot))) for a in filter( lambda x: all(x[i] >= min_widths[i] for i in range(self.ncyls())), IntegerListsLex(n=n, length=self.ncyls(), min_part=1)): if height_one: area_div = [[x] for x in a] else: area_div = tuple(list(filter(lambda d: d >= min_widths[i],arith.divisors(a[i]))) for i in range(self.ncyls())) for w in itertools.product(*area_div): h = [Integer(a[i]/w[i]) for i in range(self.ncyls())] # from here the resolution becomes linear and convex ... #TODO: program a linear and convex solution seps_b = [c[0] for c in self.cylinders()] nseps_b = list(map(len, seps_b)) lengths = tuple(IntegerListsLex(n=w[i], length=nseps_b[i], min_part=1) for i in range(self.ncyls())) for l_by_cyl in itertools.product(*lengths): l = copy(V.zero()) for i in range(self.ncyls()): for j in range(nseps_b[i]): l[seps_b[i][j]] = l_by_cyl[i][j] if not m*l: yield l,h
[docs] def cylcoord_to_origami_iterator(self, lengths, heights): r""" Convert coordinates of the cylinders into an origami. INPUT: - ``lengths`` - lengths of the separatrices - ``heights`` - heights of the cylinders OUTPUT: - iterator over all possible origamis with those lengths and heights... EXAMPLES:: sage: from surface_dynamics import * sage: cyl = CylinderDiagram('(0,1,2)-(3,1,2) (3)-(0)') sage: for o in cyl.cylcoord_to_origami_iterator((1,1,1,1),(1,1)): ....: print(o) (1,2,3)(4) (1,4)(2,3) (1,2,3)(4) (1,2,4)(3) (1,2,3)(4) (1,3,4)(2) The number of origamis generated is just the product of the widths:: sage: sum(1 for _ in cyl.cylcoord_to_origami_iterator((2,1,1,2),(3,2))) 8 """ from surface_dynamics.flat_surfaces.origamis.origami_dense import Origami_dense_pyx from sage.combinat.gray_codes import product widths = [sum(lengths[i] for i in bot) for bot in self.bot_cycle_tuples()] areas = [heights[i]*widths[i] for i in range(self.ncyls())] # initialization of partial volumes: the set of squares in cylinder i is range(v[i],v[i+1]) v = [0] for a in areas: v.append(v[-1] + a) # initialization of bottom squares: sep_i -> bottom position sep_bottom_pos = [None] * self.nseps() for i,(bot,_) in enumerate(self.cylinders()): w = 0 for j in bot: sep_bottom_pos[j] = v[i] + w w += lengths[j] # initialization of sigma_h which remains constant lx = list(range(1, v[-1]+1)) for i in range(self.ncyls()): for j in range(v[i], v[i+1], widths[i]): lx[j+widths[i]-1] = j # initialization of y except the top ly = [] for i in range(self.ncyls()): ly.extend(range(v[i]+widths[i],v[i+1])) ly.extend([None]*widths[i]) # build the top interval without twist for i,(_,top_seps) in enumerate(self.cylinders()): top = [] for k in reversed(top_seps): top.extend(range(sep_bottom_pos[k],sep_bottom_pos[k]+lengths[k])) ly[v[i+1]-widths[i]:v[i+1]] = top # yield the one without twist yield Origami_dense_pyx(tuple(lx),tuple(ly)) # yield the others using a Gray code for i,o in product(widths): if o == 1: ly.insert(v[i+1]-widths[i],ly.pop(v[i+1]-1)) else: ly.insert(v[i+1]-1,ly.pop(v[i+1]-widths[i])) yield Origami_dense_pyx(tuple(lx),tuple(ly))
[docs] def cylcoord_to_origami(self, lengths, heights, twists=None): r""" Convert coordinates of the cylinders into an origami. INPUT: - ``lengths`` - lengths of the separatrices - ``heights`` - heights of the cylinders - ``twists`` - twists for cylinders EXAMPLES:: sage: from surface_dynamics import * sage: c = CylinderDiagram([((0,1),(1,2)),((2,),(0,))]) sage: c.stratum() H_2(2) sage: c.cylcoord_to_origami([1,1,1],[1,1]).stratum() H_2(2) sage: o1 = c.cylcoord_to_origami([2,1,2],[1,1],[1,0]) sage: o1 = o1.relabel() sage: o2 = c.cylcoord_to_origami([2,1,2],[1,1],[0,1]) sage: o2 = o2.relabel() sage: o3 = c.cylcoord_to_origami([2,1,2],[1,1],[1,1]) sage: o3 = o3.relabel() sage: all(o.stratum() == Stratum([2], k=1) for o in [o1,o2,o3]) True sage: o1 == o2 or o1 == o3 or o3 == o1 False If the lengths are not compatible with the cylinder diagram a ValueError is raised:: sage: c.cylcoord_to_origami([1,2,3],[1,1]) Traceback (most recent call last): ... ValueError: lengths are not compatible with cylinder equations TESTS:: sage: c = CylinderDiagram([((0,),(1,)), ((1,2,3),(0,2,3))]) sage: c (0)-(1) (1,2,3)-(0,2,3) sage: lengths = [1,1,1,1] sage: heights = [1,1] sage: c.cylcoord_to_origami(lengths,heights,[0,0]) (1)(2,3,4) (1,2)(3,4) sage: c.cylcoord_to_origami(lengths,heights,[0,1]) (1)(2,3,4) (1,2,3)(4) sage: c.cylcoord_to_origami(lengths,heights,[0,2]) (1)(2,3,4) (1,2,4)(3) """ from sage.rings.integer_ring import ZZ from surface_dynamics.flat_surfaces.origamis.origami_dense import Origami_dense_pyx if len(lengths) != self.nseps(): raise ValueError("the 'lengths' vector has wrong length") else: lengths = [ZZ.coerce(l) for l in lengths] if len(heights) != self.ncyls(): raise ValueError("the 'heights' vector has wrong length") else: heights = [ZZ.coerce(h) for h in heights] widths = [sum(lengths[i] for i in bot) for bot,_ in self.cylinders()] if widths != [sum(lengths[i] for i in top) for _,top in self.cylinders()]: raise ValueError("lengths are not compatible with cylinder equations") if twists is None: twists = [0] * len(widths) elif len(twists) != self.ncyls(): raise ValueError("the 'twists' vector has wrong length") else: twists = [(-twists[i])%widths[i] for i in range(len(widths))] areas = [heights[i]*widths[i] for i in range(self.ncyls())] # initialization of partial volumes: the set of squares in cylinder i is range(v[i],v[i+1]) v = [0] for a in areas: v.append(v[-1] + a) # initialization of bottom squares: sep_i -> bottom position sep_bottom_pos = [None] * self.nseps() for i,(bot,_) in enumerate(self.cylinders()): w = 0 for j in bot: sep_bottom_pos[j] = v[i] + w w += lengths[j] # build the permutation r lx = list(range(1, v[-1]+1)) for i in range(self.ncyls()): for j in range(v[i], v[i+1], widths[i]): lx[j+widths[i]-1] = j # build permutation u with the given twists ly = [] for i,(_,top_seps) in enumerate(self.cylinders()): # everything excepted the top ly.extend(range(v[i]+widths[i],v[i+1])) # the top k = top_seps[0] top = list(range(sep_bottom_pos[k],sep_bottom_pos[k]+lengths[k])) for k in reversed(top_seps[1:]): top.extend(range(sep_bottom_pos[k],sep_bottom_pos[k]+lengths[k])) ly.extend(top[twists[i]:] + top[:twists[i]]) # yield the one without twist return Origami_dense_pyx(tuple(lx), tuple(ly))
[docs] def cylinder_graph(self): """ Return the cylinder graph. The cylinder graph is the graph whose vertex set are the cylinders and for each saddle connection there is a directed edge from the adjacent cylinders. The multiplicities are encoded in the labels. EXAMPLES:: sage: from surface_dynamics import CylinderDiagram sage: c = CylinderDiagram('(0,1,5)-(2,5) (2)-(0,1,3) (3,4)-(4)') sage: c.cylinder_graph() Looped digraph on 3 vertices sage: c.cylinder_graph().edges(sort=True) [(0, 0, 1), (0, 1, 1), (1, 0, 2), (1, 2, 1), (2, 2, 1)] sage: c = CylinderDiagram('(0,1,3,5)-(2,5,3) (2,4)-(0,4,1)') sage: c.cylinder_graph().edges(sort=True) [(0, 0, 2), (0, 1, 1), (1, 0, 2), (1, 1, 1)] """ bot_to_cyl = [None] * self.degree() top_to_cyl = [None] * self.degree() for i, (bot, top) in enumerate(self.cylinders()): for saddle in bot: bot_to_cyl[saddle] = i for saddle in top: top_to_cyl[saddle] = i edges = collections.defaultdict(int) for u, v in zip(top_to_cyl, bot_to_cyl): edges[u, v] += 1 G = DiGraph(self.ncyls(), loops=True, multiedges=False, weighted=True) G.add_edges([(u, v, m) for ((u, v), m) in edges.items()]) return G
#TODO # def chain_complex_dual(self, ring=None): # r""" # Return a chain complex for the cylinder diagram # # The vertices are in bijection with the cylinder of self # The edges are in bijection with separatrices and cylinders # # """ # from homology import TranslationSurfaceChainComplex # from sage.rings.integer import Integer # # if ring is None: # from sage.rings.integer_ring import IntegerRing # ring = IntegerRing() # # vertices = [] # list of list of vertex = integers from 0 to ncyls # # (in or out, edge) # edges = {} # label -> (start vertex,end) # angles = {} # (in or out,label) -> angle to next edge # # cyls = self.cylinders() # t2c = [None]*self.nseps() # b2c = [None]*self.nseps() # # for k,(cb,ct) in enumerate(cyls): # for i in cb: b2c[i] = k # for i in ct: t2c[i] = k # # for k,(cb,ct) in enumerate(cyls): # vertex = [] # e = 'c%d' %k # edges[e] = (k,k) # angles[(1,e)] = Integer(1)/Integer(2) # angles[(-1,e)] = Integer(1)/Integer(2) # # the incoming edges from bottom # for i in cb: # e = 's%d' %i # edges[e] = (t2c[i],k) # vertex.append((-1,e)) # angles[(-1,e)] = Integer(0) # angles[(-1,e)] = Integer(1)/Integer(2) # # # the central edge (outgoing) # vertex.append((1, 'c%d' %k)) # # # the outgoing edges from top # for i in ct: # e = 's%d' %i # vertex.append((1,e)) # angles[(1,e)] = Integer(0) # angles[(1,e)] = Integer(1)/Integer(2) # # # the central edge (incoming) # vertex.append((-1, 'c%d' %k)) # # vertices.append(vertex) # # return TranslationSurfaceChainComplex(ring,vertices,edges,angles)
[docs] def move_forward(i, v, g01, g23): r""" Helper function to build pillowcase covers EXAMPLES:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import move_forward sage: g23 = [1,2,0] sage: g01 = [2,0,1] sage: i,v = 0,0 sage: for _ in range(6): ....: i,v = move_forward(i, v, g01, g23) ....: print("%d %d" % (i,v)) 0 1 1 0 1 1 2 0 2 1 0 0 sage: i,v = 0,2 sage: for _ in range(6): ....: i,v = move_forward(i, v, g01, g23) ....: print("%d %d" % (i,v)) 0 3 2 2 2 3 1 2 1 3 0 2 """ if v == 0: v = 1 elif v == 2: v = 3 elif v == 1: v = 0 i = g23[i] elif v == 3: v = 2 i = g01[i] else: raise ValueError return i,v
[docs] def move_backward(i, v, g01, g23): r""" Helper function to build pillowcase covers EXAMPLES:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import move_backward sage: g23 = [1,2,0] sage: g01 = [2,0,1] sage: i,v = 0,0 sage: for _ in range(6): ....: i,v = move_backward(i, v, g01, g23) ....: print("%d %d" % (i,v)) 2 1 2 0 1 1 1 0 0 1 0 0 sage: i,v = 0,2 sage: for _ in range(6): ....: i,v = move_backward(i, v, g01, g23) ....: print("%d %d" % (i,v)) 1 3 1 2 2 3 2 2 0 3 0 2 """ if v == 0: v = 1 i = g01[i] elif v == 1: v = 0 elif v == 2: v = 3 i = g23[i] elif v == 3: v = 2 else: raise ValueError return i,v
[docs] def simplex_count(rays): r""" EXAMPLES:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import simplex_count sage: rays = [(0,1,1), (1,0,1), (1,1,0)] sage: simplex_count(rays) 1 sage: rays = [(0,1,1), (1,0,1), (1,1,0)] sage: simplex_count(rays) 1 sage: rays = [(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)] sage: simplex_count(rays) 1 """ from sage.geometry.polyhedron.constructor import Polyhedron d = len(rays[0]) return Polyhedron([[0]*d] + list(rays)).integral_points_count() - len(rays)
[docs] class QuadraticCylinderDiagram(SageObject): r""" Cylinder diagram for quadratic differentials Cylinder diagrams are encoded as a Ribbon graph together with a pairing of faces (in particular the number of faces must be even). EXAMPLES:: sage: from surface_dynamics import * If you start with strings, the cylinders are preserved but the names of saddle connections are changed:: sage: QuadraticCylinderDiagram('(4,4,5)-(6,6,1) (2,3,2,0)-(1,0,5,3)') (0,0,1)-(2,2,3) (4,5,4,6)-(3,6,1,5) """ def __init__(self, arg1, arg2=None): r""" INPUT: there are two input formats - with a unique argument - with two arguments - ``g`` -- a ribbon graph - ``pairing`` -- the pairing of faces of g (= permutation) """ from .homology import RibbonGraph if arg2 is None: if isinstance(arg1, str): data = [(string_to_cycle(b),string_to_cycle(t)) for b,t in (w.split('-') for w in arg1.split(' '))] else: data = arg1 N = 0 for i,pair in enumerate(data): if not isinstance(pair, (tuple, list)) or len(pair) != 2: raise TypeError('input must be a list of pairs') data[i] = [[int(x) for x in pair[0]], [int(x) for x in pair[1]]] N += len(pair[0]) + len(pair[1]) if N%2: raise ValueError('each symbol must appear exactly twice') n = N//2 for b,t in data: if any(i < 0 or i >= n for i in b) or \ any(i < 0 or i >= n for i in t): raise ValueError('symbol out of range') k = 0 faces = [] edges = [None] * N seen = [None] * n p = [] for i, bt in enumerate(data): # constructing p (= face matching) p.append(2*i+1) p.append(2*i) # constructing edges and faces for f in bt: faces.append(tuple(range(k, k+len(f)))) for j in range(len(f)): e = f[j] if seen[e] is not None: if seen[e] == -1: raise ValueError('number %d appears more than twice' % e) kk = seen[e] edges[kk] = k + j edges[k + j] = kk seen[e] = -1 else: seen[e] = k + j k += len(f) g = RibbonGraph(edges=edges, faces=faces, connected=False) else: g = arg1 p = arg2 if not isinstance(g, RibbonGraph): raise ValueError p = perm_init(p) self._g = g self._p = p self._check() k = 0 fc = self._face_to_cylinder_index = [None] * self._g.num_faces() for i in range(len(self._p)): if fc[i] is None: fc[i] = k fc[self._p[i]] = k k += 1 def _check(self): self._g._check() f = self._g.num_faces() if f % 2: raise ValueError('the number of faces of the fatgraph must be even') if len(self._p) != f: raise ValueError('the pairing has wrong length') for i,j in enumerate(self._p): if i == j or self._p[j] != i: raise ValueError('the pairing is not an involution') from sage.graphs.graph import Graph G = Graph(loops=True, multiedges=True) for i in range(self._g._total_darts): if self._g._active_darts[i]: G.add_edge(i,self._g._vertices[i]) G.add_edge(i,self._g._edges[i]) G.add_edge(i,self._g._faces[i]) for i,j in enumerate(self._p): k1 = self._g._face_cycles[i][0] k2 = self._g._face_cycles[j][0] G.add_edge(k1, k2) if not G.is_connected(): raise ValueError("the graph is not connected")
[docs] def num_darts(self): r""" Number of darts """ return self._g.num_darts()
[docs] def num_edges(self): r""" Number of edges """ return self._g.num_edges()
nseps = num_edges
[docs] def edges(self): r""" The set of edges. """ return self._g.edges()
[docs] def num_cylinders(self): r""" Number of cylinders. """ return len(self._p) // 2
ncyls = num_cylinders
[docs] def stratum(self): r""" Return the stratum of quadratic differentials associated to this cylinder diagram EXAMPLES:: sage: from surface_dynamics import * sage: QuadraticCylinderDiagram('(0,0)-(1,1)').stratum() Q_0(-1^4) sage: QuadraticCylinderDiagram('(0,0)-(1,1,2,2,3,3)').stratum() Q_0(1, -1^5) sage: QuadraticCylinderDiagram('(0,2,3,2)-(1,0,1,3)').stratum() Q_2(2^2) sage: QuadraticCylinderDiagram('(0,1)-(2,3) (0)-(4,4) (1)-(5,5) (2)-(6,6) (3)-(7,7)').stratum() Q_0(2^2, -1^8) """ from surface_dynamics.flat_surfaces.quadratic_strata import Stratum return Stratum([len(t)-2 for t in self._g._vertex_cycles], k=2)
[docs] def cylinders(self, dart=False): r""" Cylinders of self Return a list of pairs ``(bot, top)`` where, by convention the bottom corresponds to the face with smaller index in the list of faces. EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import QuadraticCylinderDiagram sage: rg = RibbonGraph(edges='(0,1)(2,3)(4,5)(6,7)', faces='(0,1)(2,4,5)(3)(6,7)', connected=False) sage: q = QuadraticCylinderDiagram(rg, '(0,1)(2,3)') sage: q.cylinders() [((0, 0), (1, 2, 2)), ((1,), (3, 3))] sage: q.cylinders(True) [((0, 1), (2, 4, 5)), ((3,), (6, 7))] """ ans = [] g = self._g for i,j in enumerate(self._p): if i > j: continue bot = g._face_cycles[i] top = g._face_cycles[j] if dart: bot = tuple(bot) top = tuple(top) else: bot = tuple(g._dart_to_edge_index[x] for x in bot) top = tuple(g._dart_to_edge_index[x] for x in top) ans.append((bot,top)) return ans
def _repr_(self): r""" EXAMPLES:: sage: from surface_dynamics import * sage: from surface_dynamics.flat_surfaces.separatrix_diagram import QuadraticCylinderDiagram sage: rg = RibbonGraph(edges='(0,1)(2,3)(4,5)(6,7)', faces='(0,1)(2,4,5)(3)(6,7)', connected=False) sage: q = QuadraticCylinderDiagram(rg, '(0,1)(2,3)') sage: q (0,0)-(1,2,2) (1)-(3,3) """ s = [] for bot,top in self.cylinders(): bot = ','.join(str(x) for x in bot) top = ','.join(str(x) for x in top) s.append('({})-({})'.format(bot,top)) return ' '.join(s)
[docs] def lengths_cone(self): r""" Return the polytope of admissible lengths. EXAMPLES:: sage: from surface_dynamics import * sage: rg = RibbonGraph(edges='(0,1)(2,3)(4,5)(6,7)', faces='(0,1)(2,4,5)(3)(6,7)', connected=False) sage: q = QuadraticCylinderDiagram(rg, '(0,1)(2,3)') sage: q.stratum() Q_0(1, -1^5) sage: q.lengths_cone().rays_list() [[1, 0, 1, 0], [1, 2, 0, 1]] sage: rg = RibbonGraph(edges='(0,1)(2,3)(4,5)(6,7)', faces='(0,2,3)(1)(4,6,7)(5)', connected=False) sage: q = QuadraticCylinderDiagram(rg, '(0,2)(1,3)') sage: rg = RibbonGraph(edges='(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)', faces='(1,2)(3,4,6)(5)(8)(7,9,10)(11,12)', connected=False) sage: q = QuadraticCylinderDiagram(rg, '(0,1)(2,4)(3,5)') sage: q.stratum() Q_0(1^2, -1^6) sage: L = q.lengths_cone() sage: L A 3-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex and 3 rays """ from sage.rings.integer_ring import ZZ n = self.num_edges() ieqs = [] eqns = [] # lengths are non-negative e = [ZZ.zero()] * (n+1) for i in range(n): e[i+1] = ZZ.one() ieqs.append(e[:]) e[i+1] = ZZ.zero() # for each cylinder, length top = length bot for i,(bot,top) in enumerate(self.cylinders()): e = [ZZ.zero()] * (n+1) for i in bot: e[i+1] += ZZ.one() for i in top: e[i+1] -= ZZ.one() eqns.append(e) from sage.geometry.polyhedron.constructor import Polyhedron return Polyhedron(eqns=eqns, ieqs=ieqs)
[docs] def widths_generating_series(self, var='w'): r""" Generating series of the number of saddle connection lengths of this quadratic differential cylinder diagram. .. WARNING:: When a triangulation is involved, the generating series ignore some lower dimensional polytopes that are counted twice! EXAMPLES:: sage: from surface_dynamics import * sage: q = QuadraticCylinderDiagram('(0,1,2,3,3)-(0,4,4,2,1)') sage: q.widths_generating_series() # optional -- latte_int (1)/((1 - w)^3*(1 - w^2)) sage: q = QuadraticCylinderDiagram('(0,0,1,1,2,2)-(3,3,4,4)') sage: q.widths_generating_series() # optional -- latte_int (3)/((1 - w^2)^4) sage: q = QuadraticCylinderDiagram('(0,0,1)-(2,2,3) (1,4)-(3,4)') sage: q.widths_generating_series() # optional -- latte_int (1)/((1 - w1)*(1 - w0*w1)*(1 - w0^2)) sage: q = QuadraticCylinderDiagram('(0,0,1,2,3)-(1,4,4,5,6) (2,5,7,7,8)-(3,6,8,9,9)') sage: F = q.widths_generating_series() # optional -- latte_int sage: q = QuadraticCylinderDiagram('(0,0,1,2,3)-(1,4,4,5,6) (2,5,7,8,8)-(3,6,7,9,9)') sage: F = q.widths_generating_series() # optional -- latte_int """ from sage.matrix.constructor import matrix from surface_dynamics.misc.multiplicative_multivariate_generating_series import MultiplicativeMultivariateGeneratingSeriesRing from sage.geometry.polyhedron.constructor import Polyhedron sub1 = [[] for i in range(self.nseps())] sub2 = [[] for i in range(self.nseps())] for i,(top,bot) in enumerate(self.cylinders()): for j in top: sub1[j].append(i) for j in bot: sub2[j].append(i) dim = self.nseps() - self.ncyls() M = MultiplicativeMultivariateGeneratingSeriesRing(self.ncyls(), 'w') V = M.free_module() ans = M.zero() for rays in cone_triangulate(self.lengths_cone()): assert len(rays) == dim, (self, rays, dim) num = simplex_count(rays) den1 = {} den2 = {} for r in rays: l1 = [0] * self.ncyls() l2 = [0] * self.ncyls() for j,c in enumerate(r): for k in sub1[j]: l1[k] += c for k in sub2[j]: l2[k] += c v1 = V(l1) v1.set_immutable() v2 = V(l2) v2.set_immutable() if v1 in den1: den1[v1] += 1 else: den1[v1] = 1 if v2 in den2: den2[v2] += 1 else: den2[v2] = 1 f1 = M.term(num, list(den1.items())) f2 = M.term(num, list(den2.items())) assert f1 == f2, (f1, f2) ans += f1 return ans
def _lengths_to_dart_x_coords(self, lengths): r""" EXAMPLES:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import QuadraticCylinderDiagram sage: from surface_dynamics import * sage: r = RibbonGraph(vertices='(0,3,1,2)(4,7,5,6)', ....: edges='(0,1)(2,3)(4,5)(6,7)', ....: faces='(0,3,1,2)(4,7,5,6)', connected=False) sage: q = QuadraticCylinderDiagram(r, [1,0]) sage: q._lengths_to_dart_x_coords(lengths=[2,2,2,2]) [0, 4, 6, 2, 0, 4, 6, 2] sage: q._lengths_to_dart_x_coords(lengths=[1,2,3,4]) [0, 3, 4, 1, 0, 7, 10, 3] """ G = self._g dart_x_coords = [None] * G.num_darts() for f in G.faces(): dart_x_coords[f[0]] = 0 w = lengths[G._dart_to_edge_index[f[0]]] for i in range(1, len(f)): dart_x_coords[f[i]] = w w += lengths[G._dart_to_edge_index[f[i]]] return dart_x_coords def _cylcoord_dart_to_corner(self, dart_x_coords, heights, twists, verbose=False): r""" TESTS:: sage: from surface_dynamics.flat_surfaces.separatrix_diagram import QuadraticCylinderDiagram sage: from surface_dynamics import * The pillow:: sage: q = QuadraticCylinderDiagram('(0,0)-(1,1)') sage: x = q._lengths_to_dart_x_coords([1, 1]) sage: q._cylcoord_dart_to_corner(x, [1], [0]) [0, 1, 3, 2] sage: q._cylcoord_dart_to_corner(x, [1], [1]) [0, 1, 2, 3] sage: x = q._lengths_to_dart_x_coords([2, 2]) sage: q._cylcoord_dart_to_corner(x, [1], [0]) [0, 0, 3, 3] sage: q._cylcoord_dart_to_corner(x, [1], [1]) [0, 0, 2, 2] An example in `Q(2^2)` (everything is authorized):: sage: q = QuadraticCylinderDiagram('(0,1,0,1)-(2,3,2,3)') sage: x = q._lengths_to_dart_x_coords([2,2,2,2]) sage: q._cylcoord_dart_to_corner(x, [1], [0]) [0, 0, 0, 0, 3, 3, 3, 3] sage: q._cylcoord_dart_to_corner(x, [1], [1]) [0, 0, 0, 0, 2, 2, 2, 2] sage: q._cylcoord_dart_to_corner(x, [2], [0]) [0, 0, 0, 0, 0, 0, 0, 0] sage: q._cylcoord_dart_to_corner(x, [2], [1]) [0, 0, 0, 0, 1, 1, 1, 1] Another example in `Q(2^2)`:: sage: q = QuadraticCylinderDiagram('(0,2,0,3)-(1,2,1,3)') sage: x = q._lengths_to_dart_x_coords([1,2,2,1]) sage: q._cylcoord_dart_to_corner(x, [2], [0]) [0, 1, 1, 0, 0, 1, 1, 0] An example in `Q(3, -1^3)`:: sage: q = QuadraticCylinderDiagram('(0,1,1)-(0,2,2,3,3)') sage: x = q._lengths_to_dart_x_coords([2, 1, 1, 1]) sage: q._cylcoord_dart_to_corner(x, [2], [0]) [0, 0, 1, 0, 0, 1, 0, 1] sage: q._cylcoord_dart_to_corner(x, [1], [0]) Traceback (most recent call last): ... ValueError: invalid lengths/heights/twists sage: q._cylcoord_dart_to_corner(x, [1], [1]) Traceback (most recent call last): ... ValueError: invalid lengths/heights/twists An example in `Q(4, 2, -1^2)`:: sage: q = QuadraticCylinderDiagram('(0,1,0,2)-(1,3,4,3) (2,4)-(5,5)') sage: x = q._lengths_to_dart_x_coords([1, 2, 2, 1, 2, 2]) sage: q._cylcoord_dart_to_corner(x, [2, 1], [1, 0]) [0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 3, 3] sage: q._cylcoord_dart_to_corner(x, [2, 1], [1, 1]) [0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2] sage: q._cylcoord_dart_to_corner(x, [2, 1], [0, 0]) Traceback (most recent call last): ... ValueError: invalid lengths/heights/twists """ G = self._g # pillowcase vertices dart_to_corner = [None] * G.num_darts() # which vertex of the pillowcase the attached dart_to_corner[0] = 0 todo = set([0]) # dart from which we should complete vertices and faces cross = set([0]) # dart from which we should cross cylinders while todo or cross: # 1. completing vertices and faces while todo: i = todo.pop() if verbose: print('** new loop **') print(' i = {}'.format(i)) print(' dart_to_corner = {}'.format(dart_to_corner)) v = dart_to_corner[i] assert v is not None for j in G.vertex_orbit(i): if dart_to_corner[j] is None: dart_to_corner[j] = v todo.add(j) elif dart_to_corner[j] != dart_to_corner[i]: if verbose: print('i = {} j = {} dart_to_corner[{}] = {} dart_to_corner[{}] = {}'.format( i, j, i, dart_to_corner[i], j, dart_to_corner[j])) raise ValueError('invalid lengths/heights/twists') if verbose: print('done completing vertex') print(' dart_to_corner = {}'.format(dart_to_corner)) f = G.face_orbit(i) m = dart_x_coords[i] % 2 for j in f: if dart_x_coords[j] % 2 == m: if dart_to_corner[j] is None: dart_to_corner[j] = v todo.add(j) elif dart_to_corner[j] != dart_to_corner[i]: if verbose: print('i = {} j = {} dart_to_corner[{}] = {} dart_to_corner[{}] = {}'.format( i, j, i, dart_to_corner[i], j, dart_to_corner[j])) raise ValueError('invalid lengths/heights/twists') else: # 0 <-> 1 and 2 <-> 3 vv = v + 1 - 2 * (v % 2) if dart_to_corner[j] is None: dart_to_corner[j] = vv todo.add(j) elif dart_to_corner[j] != vv: if verbose: print('j = {} dart_to_corner[{}] = {}'.format(j,j,dart_to_corner[j])) raise ValueError('invalid lengths/heights/twists') cross.add(min(f)) if verbose: print('done completing face') print(' dart_to_corner = {}'.format(dart_to_corner)) # 2. crossing cylinders while cross: # i: dart index # j: face index i = cross.pop() v = dart_to_corner[i] j = G._dart_to_face_index[i] k = self._face_to_cylinder_index[j] jj = self._p[j] ii = G._face_cycles[jj][0] vv = v if heights[k] % 2: # 0 <-> 3 and 1 <-> 2 vv = 3 - vv if twists[k] % 2: # 0 <-> 1 and 2 <-> 3 vv = vv + 1 - 2 * (vv % 2) if verbose: print('crossing cylinder from i={} to ii={}'.format(i, ii)) print(' dart {} is above pillow vertex {}'.format(i, v)) print(' dart {} is above pillow vertex {}'.format(ii, vv)) if dart_to_corner[ii] is None: dart_to_corner[ii] = vv todo.add(ii) elif dart_to_corner[ii] != vv: if verbose: print('ii = {} dart_to_corner[{}] = {}'.format(ii, ii, dart_to_corner[ii])) raise ValueError('invalid lengths/heights/twists') if verbose: print('done crossing cylinder {} from dart {}'.format(j, i)) print(' dart_to_corner = {}'.format(dart_to_corner)) if verbose: print('dart_to_corner: {}'.format(dart_to_corner)) return dart_to_corner # figure out whether this awful method is really useful... # square tiled quadratic surface would be much more simple to handle
[docs] def cylcoord_to_pillowcase_cover(self, lengths, heights, twists=None, verbose=False): r""" Convert coordinates of the cylinders into a pillowcase cover. The pillow is considered as made of two 1 x 1 squares in order to avoid denominators in the input ``lengths``, ``heights`` and ``twists``. INPUT: - ``lengths`` - positive integers - lengths of the separatrices - ``heights`` - positive integers - heights of the cylinders - ``twists`` - (optional) non-negative integers - twists. The twist is measured as the difference in horizontal coordinates between the smallest element in bottom and the smallest in element in top. OUTPUT: a pillowcase cover EXAMPLES:: sage: from surface_dynamics import * Some pillows in `Q(-1^4)`:: sage: q = QuadraticCylinderDiagram('(0,0)-(1,1)') sage: q.cylcoord_to_pillowcase_cover([1,1],[1],[0]) g0 = (1) g1 = (1) g2 = (1) g3 = (1) sage: q.cylcoord_to_pillowcase_cover([1,1],[1],[1]) g0 = (1) g1 = (1) g2 = (1) g3 = (1) sage: q.cylcoord_to_pillowcase_cover([2,2],[1],[0]) g0 = (1)(2) g1 = (1,2) g2 = (1,2) g3 = (1)(2) sage: q.cylcoord_to_pillowcase_cover([2,2],[1],[1]) g0 = (1)(2) g1 = (1,2) g2 = (1)(2) g3 = (1,2) sage: q.cylcoord_to_pillowcase_cover([2,2],[1],[2]) == q.cylcoord_to_pillowcase_cover([2,2],[1],[2]) True sage: q.cylcoord_to_pillowcase_cover([3,3],[1],[0]) g0 = (1)(2,3) g1 = (1,3)(2) g2 = (1,3)(2) g3 = (1)(2,3) sage: q.cylcoord_to_pillowcase_cover([3,3],[1],[1]) g0 = (1)(2,3) g1 = (1,3)(2) g2 = (1)(2,3) g3 = (1,2)(3) sage: q.cylcoord_to_pillowcase_cover([1,1],[2],[0]) g0 = (1)(2) g1 = (1)(2) g2 = (1,2) g3 = (1,2) sage: q.cylcoord_to_pillowcase_cover([1,1],[2],[1]) == q.cylcoord_to_pillowcase_cover([1,1],[2],[0]) True sage: q.cylcoord_to_pillowcase_cover([2,2],[2],[1]) g0 = (1)(2)(3,4) g1 = (1,2)(3)(4) g2 = (1,3)(2,4) g3 = (1,4)(2,3) Two one cylinder examples in `Q(2^2)`:: sage: q1 = QuadraticCylinderDiagram('(0,1,0,1)-(2,3,2,3)') sage: q2 = QuadraticCylinderDiagram('(0,1,0,2)-(3,1,3,2)') sage: q1.cylcoord_to_pillowcase_cover([2,2,2,2],[1],[0]) g0 = (1,2,3,4) g1 = (1,3)(2,4) g2 = (1,3)(2,4) g3 = (1,4,3,2) sage: q1.cylcoord_to_pillowcase_cover([2,2,2,2],[1],[1]) g0 = (1,2,3,4) g1 = (1,3)(2,4) g2 = (1,4,3,2) g3 = (1,3)(2,4) sage: p = q1.cylcoord_to_pillowcase_cover([2,6,4,4],[3],[1]) sage: p.stratum() Q_2(2^2) sage: p.nb_pillows() 24 One two cylinders example in `Q(2^2)`:: sage: q = QuadraticCylinderDiagram('(0,1)-(2,3) (0,3)-(1,2)') sage: p = q.cylcoord_to_pillowcase_cover([1,1,1,1], [2,2], [0,1]) sage: p g0 = (1,4,2,3) g1 = (1,3,2,4) g2 = (1,2)(3,4) g3 = (1,2)(3,4) sage: p.stratum() Q_2(2^2) sage: q.cylcoord_to_pillowcase_cover([1,3,1,3], [2,2], [0,1]).stratum() Q_2(2^2) TESTS:: sage: from surface_dynamics import * sage: q = QuadraticCylinderDiagram('(0,0)-(1,1)') sage: q.cylcoord_to_pillowcase_cover([1,2],[1]) Traceback (most recent call last): ... ValueError: sum of lengths on top and bottom differ """ from sage.rings.integer_ring import ZZ G = self._g if len(lengths) != G.num_edges(): raise ValueError("'lengths' has wrong length") if len(heights) != self.num_cylinders(): raise ValueError("'heights' has wrong length") lengths = [ZZ.coerce(l) for l in lengths] heights = [ZZ.coerce(h) for h in heights] ZZ_zero = ZZ.zero() for l in lengths: if l <= ZZ_zero: raise ValueError("each length should be positive") for h in heights: if h <= ZZ_zero: raise ValueError("each height should be positive") widths = [] for bot, top in self.cylinders(dart=False): w1 = sum(lengths[i] for i in bot) w2 = sum(lengths[i] for i in top) if w1 != w2: raise ValueError('sum of lengths on top and bottom differ') widths.append(w1) areas = [heights[i] * widths[i] for i in range(self.ncyls())] N = sum(areas) # number of squares if N % 2: raise ValueError('got an odd area') N = N // 2 if verbose: print('area = {}'.format(N)) if twists is None: twists = [ZZ_zero] * self.num_cylinders() elif len(twists) != len(widths): raise ValueError("the 'twists' vector has wrong length") else: twists = [ZZ.coerce(t) % w for (t,w) in zip(twists, widths)] # now glue the boundaries # (distance with respect to the minimum dart in the face) x = self._lengths_to_dart_x_coords(lengths) dart_to_corner = self._cylcoord_dart_to_corner(x, heights, twists, verbose) # building dart_to_pillow if verbose: print('Constructing dart_to_pillow') dart_to_pillow = [None] * G.num_darts() n = 0 for w,h,t,(bot,top) in zip(widths, heights, twists, self.cylinders(True)): w = w // 2 if verbose: print('new cylinder ({},{}) w={} h={} t={}'.format(bot,top,w,h,t)) print('pillows in [n, n + h*w[ = [{}, {}['.format(n, n+h*w)) # pillows in the bottom dart_to_pillow[bot[0]] = n nn = n for i in range(len(bot) - 1): j = bot[i] l = lengths[G._dart_to_edge_index[j]] if l % 2: # changing vertex nature (0 <-> 1, 2 <-> 3) v = dart_to_corner[j] if verbose: print(' odd length {} for dart {} at ({},{})'.format(l,j,nn,v)) if v == 0 or v == 2: nn += (l - 1) // 2 else: nn += (l + 1) // 2 else: # keeping vertex nature if verbose: print(' even length {} for dart {}'.format(l,j)) nn += l // 2 if nn >= n + w: nn -= w if verbose: print(' n={} w={} nn = {}'.format(n,w,nn)) assert n <= nn < n + w dart_to_pillow[bot[i+1]] = nn if verbose: print(' dart to pillow done on bot') print(' dart_to_pillow {}'.format(dart_to_pillow)) # pillow of top[0] (depends on twist) if t % 2 == 0: tadj = t // 2 else: v = dart_to_corner[bot[0]] if v % 2: tadj = (t+1) // 2 else: tadj = (t-1) // 2 nn = dart_to_pillow[bot[0]] + (h-1)*w + tadj if nn >= n + h * w: nn -= w assert n + (h-1)*w <= nn < n + h * w dart_to_pillow[top[0]] = nn if verbose: print(' crossing cylinder: dart {} at ({},{})'.format( top[0], dart_to_pillow[top[0]], dart_to_corner[top[0]])) # other pillows on top for i in range(len(top) - 1): j = top[i] l = lengths[G._dart_to_edge_index[j]] if l % 2: # changing vertex nature (0 <-> 1, 2 <-> 3) v = dart_to_corner[j] if verbose: print(' odd length {} for dart {} at ({},{})'.format(l,j,nn,v)) if v == 0 or v == 2: nn -= (l - 1) // 2 else: nn -= (l + 1) // 2 if verbose: print(' ends at {}'.format(nn)) else: # keeping vertex nature if verbose: print(' even length {} for dart {}'.format(l,j)) nn -= l // 2 if nn < n + (h-1)*w: nn += w assert n <= nn < n + h * w dart_to_pillow[top[i+1]] = nn n += h * w if verbose: print(' dart to pillow done on top') print(' dart_to_pillow: {}'.format(dart_to_pillow)) # safety check assert all(i is None or 0 <= i < N for i in dart_to_pillow) # fill the cylinders and record the number at a dart # (g01 and g23 correspond to horizontal displacements) g0 = [None] * N g1 = [None] * N g2 = [None] * N g3 = [None] * N g = [g0, g1, g2, g3] g01 = [None] * N # redundant information (will be used to glue edges) g23 = [None] * N # redundant information (will be used to glue edges) n = 0 if verbose: print('Filling permutations inside cylinders') for w,h,t,(bot,top) in zip(widths, heights, twists, self.cylinders(True)): w = w // 2 if verbose: print('** new cylinder **') print(' w = {} h = {} t = {} n = {}'.format(w,h,t,n)) u = dart_to_corner[bot[0]] if u < 2: h0 = g0 h1 = g1 h2 = g2 h3 = g3 h01 = g01 h23 = g23 else: h0 = g2 h1 = g3 h2 = g0 h3 = g1 h01 = g23 h23 = g01 # filling all rows but the top one for k in range(h - 1): if verbose: print(' filling row k={} from n={}'.format(k, n)) for i in range(n, n + w): h2[i] = i + w h2[i + w] = i h3[i] = i + w - 1 h3[i + w - 1] = i h23[i] = i + 1 h01[i + 1] = i # adjustments at the gluings (left and right of the cylinders) h3[n] = n + 2*w - 1 h3[n + 2*w - 1] = n h23[n + w - 1] = n h01[n] = n + w - 1 # 3 2 -> 1 0 # 0 1 2 3 h0, h1, h2, h3 = h2, h3, h0, h1 h01, h23 = h23, h01 n += w if verbose: print(' done') print(' g0 = {}'.format(g0)) print(' g1 = {}'.format(g1)) print(' g2 = {}'.format(g2)) print(' g3 = {}'.format(g3)) print(' g01 = {}'.format(g01)) print(' g23 = {}'.format(g23)) # top row if verbose: print(' filling top row from n={}'.format(n)) for i in range(n, n + w - 1): h23[i] = i + 1 h01[i + 1] = i h23[n + w - 1] = n h01[n] = n + w - 1 n += w if verbose: print(' done') print(' g0 = {}'.format(g0)) print(' g1 = {}'.format(g1)) print(' g2 = {}'.format(g2)) print(' g3 = {}'.format(g3)) print(' g01 = {}'.format(g01)) print(' g23 = {}'.format(g23)) if verbose: print('done filling cylinders:') print(' g0 : {}'.format(g0)) print(' g1 : {}'.format(g1)) print(' g2 : {}'.format(g2)) print(' g3 : {}'.format(g3)) print(' g01: {}'.format(g01)) print(' g23: {}'.format(g23)) # safety check assert all(i is None or 0 <= i < N for i in g0) assert all(i is None or 0 <= i < N for i in g1) assert all(i is None or 0 <= i < N for i in g2) assert all(i is None or 0 <= i < N for i in g3) assert all(i is not None and 0 <= i < N for i in g01) assert all(i is not None and 0 <= i < N for i in g23) assert all(g0.count(i) < 2 for i in range(N)) assert all(g1.count(i) < 2 for i in range(N)) assert all(g2.count(i) < 2 for i in range(N)) assert all(g3.count(i) < 2 for i in range(N)) # gluing corners for c in G._vertex_cycles: i = dart_to_pillow[c[0]] u = dart_to_corner[c[0]] if verbose: print('gluing vertex c = {}'.format(c)) print(' c[0] = {} at ({},{})'.format(c[0], i, u)) for k in range(len(c)-1): j = dart_to_pillow[c[k+1]] v = dart_to_corner[c[k+1]] if verbose: print(' c[{}] = {} at ({},{})'.format(k+1, c[k+1], j, v)) assert u == v # safety check g[u][i] = j i = j j = dart_to_pillow[c[0]] v = dart_to_corner[c[0]] g[u][i] = j if verbose: print('done gluing corners') print(' g0: {}'.format(g0)) print(' g1: {}'.format(g1)) print(' g2: {}'.format(g2)) print(' g3: {}'.format(g3)) # safety check assert all(i is None or 0 <= i < N for i in g0) assert all(i is None or 0 <= i < N for i in g1) assert all(i is None or 0 <= i < N for i in g2) assert all(i is None or 0 <= i < N for i in g3) assert all(i is not None and 0 <= i < N for i in g01) assert all(i is not None and 0 <= i < N for i in g23) assert all(g0.count(i) < 2 for i in range(N)) assert all(g1.count(i) < 2 for i in range(N)) assert all(g2.count(i) < 2 for i in range(N)) assert all(g3.count(i) < 2 for i in range(N)) # gluing edges for s1, s2 in G._edge_cycles: t1 = G._faces[s1] # endpoint of first edge t2 = G._faces[s2] # endpoint of second edge i1 = dart_to_pillow[s1] u1 = dart_to_corner[s1] j1 = dart_to_pillow[t1] v1 = dart_to_corner[t1] i2 = dart_to_pillow[s2] u2 = dart_to_corner[s2] j2 = dart_to_pillow[t2] v2 = dart_to_corner[t2] if verbose: print('gluing edge {} ({},{}) - {} ({},{}) to {} ({},{}) - {} ({},{})'.format( s1,i1,u1, t1,j1,v1, s2,i2,u2, t2,j2,v2)) # safety check assert u1 == v2 and u2 == v1 # gluing the central part j2, v2 = move_backward(j2, v2, g01, g23) if verbose: print('MOVE BACKWARD ({},{})'.format(j2, v2)) i1, u1 = move_forward(i1, u1, g01, g23) if verbose: print('MOVE FORWARD ({},{})'.format(i1, u1)) while (j2,v2) != (i2,u2): if verbose: print(' glue (i1,u1) = ({},{}) and (j2,v2) = ({},{})'.format(i1, u1, j2, v2)) # safety check assert u1 == v2 g[v2][j2] = i1 g[v2][i1] = j2 j2, v2 = move_backward(j2, v2, g01, g23) i1, u1 = move_forward(i1, u1, g01, g23) if verbose: print('done gluing edges') print(' (i1,u1) = ({},{})'.format(i1,u1)) print(' (j1,v1) = ({},{})'.format(j1,v1)) print(' (i2,u2) = ({},{})'.format(i2,u2)) print(' (j2,v2) = ({},{})'.format(j2,v2)) print(' g0: {}'.format(g0)) print(' g1: {}'.format(g1)) print(' g2: {}'.format(g2)) print(' g3: {}'.format(g3)) # safety check assert (i1,u1) == (j1,v1) from surface_dynamics.flat_surfaces.origamis.pillowcase_cover import PillowcaseCover return PillowcaseCover(g0, g1, g2, g3, as_tuple=True)