--- jupytext: formats: ipynb,md:myst text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.16.4 kernelspec: display_name: SageMath 9.7 language: sage name: sagemath --- # The GL(2,R) Action, the Veech Group, Delaunay Decomposition ## Acting on surfaces by matrices. ```{code-cell} --- jupyter: outputs_hidden: true --- from flatsurf import translation_surfaces s = translation_surfaces.veech_double_n_gon(5) ``` ```{code-cell} --- jupyter: outputs_hidden: false --- s.plot() ``` ```{code-cell} --- jupyter: outputs_hidden: false --- m = matrix([[2, 1], [1, 1]]) ``` You can act on surfaces with the $GL(2,R)$ action ```{code-cell} --- jupyter: outputs_hidden: false --- ss = m * s ss ``` ```{code-cell} --- jupyter: outputs_hidden: false --- ss.plot() ``` To "renormalize" you can improve the presentation using the Delaunay decomposition. ```{code-cell} --- jupyter: outputs_hidden: false --- sss = ss.delaunay_decomposition() sss ``` ```{code-cell} --- jupyter: outputs_hidden: false --- sss.plot() ``` ## The Veech group Set $s$ to be the double pentagon again. ```{code-cell} --- jupyter: outputs_hidden: true --- s = translation_surfaces.veech_double_n_gon(5) ``` The surface has a horizontal cylinder decomposition all of whose moduli are given as below ```{code-cell} --- jupyter: outputs_hidden: false --- p = s.polygon(0) modulus = (p.vertex(3)[1] - p.vertex(2)[1]) / (p.vertex(2)[0] - p.vertex(4)[0]) AA(modulus) ``` ```{code-cell} --- jupyter: outputs_hidden: false --- m = matrix(s.base_ring(), [[1, 1 / modulus], [0, 1]]) show(m) ``` ```{code-cell} --- jupyter: outputs_hidden: false --- show(matrix(AA, m)) ``` The following can be used to check that $m$ is in the Veech group of $s$. ```{code-cell} --- jupyter: outputs_hidden: false --- s.canonicalize() == (m * s).canonicalize() ``` ## Infinite surfaces Infinite surfaces support multiplication by matrices and computing the Delaunay decomposition. (Computation is done "lazily") ```{code-cell} --- jupyter: outputs_hidden: false --- s = translation_surfaces.chamanara(1 / 2) ``` ```{code-cell} --- jupyter: outputs_hidden: false --- s.plot(edge_labels=False, polygon_labels=False) ``` ```{code-cell} --- jupyter: outputs_hidden: true --- ss = s.delaunay_decomposition() ``` ```{code-cell} --- jupyter: outputs_hidden: true --- gs = ss.graphical_surface(edge_labels=False, polygon_labels=False) gs.make_all_visible(limit=20) ``` ```{code-cell} --- jupyter: outputs_hidden: false --- gs.plot() ``` ```{code-cell} --- jupyter: outputs_hidden: true --- m = matrix([[2, 0], [0, 1 / 2]]) ``` ```{code-cell} --- jupyter: outputs_hidden: true --- ms = m * s ``` ```{code-cell} --- jupyter: outputs_hidden: false --- gs = ms.graphical_surface(edge_labels=False, polygon_labels=False) gs.make_all_visible(limit=20) gs.plot() ``` ```{code-cell} --- jupyter: outputs_hidden: false --- mss = ms.delaunay_decomposition() ``` ```{code-cell} --- jupyter: outputs_hidden: false --- gs = mss.graphical_surface(edge_labels=False, polygon_labels=False) gs.make_all_visible(limit=20) gs.plot() ``` You can tell from the above picture that $m$ is in the Veech group.